Loading...
Search for: genetic-procedures
0.009 seconds
Total 27 records

    Recent Progress of Triboelectric Nanogenerators for Biomedical Sensors: From Design to Application

    , Article Biosensors ; Volume 12, Issue 9 , 2022 ; 20796374 (ISSN) Rahimi Sardo, F ; Rayegani, A ; Matin Nazar, A ; Balaghiinaloo, M ; Saberian, M ; Mohsan, S. A. H ; Alsharif, M. H ; Cho, H. S ; Sharif University of Technology
    MDPI  2022
    Abstract
    Triboelectric nanogenerators (TENG) have gained prominence in recent years, and their structural design is crucial for improvement of energy harvesting performance and sensing. Wearable biosensors can receive information about human health without the need for external charging, with energy instead provided by collection and storage modules that can be integrated into the biosensors. However, the failure to design suitable components for sensing remains a significant challenge associated with biomedical sensors. Therefore, design of TENG structures based on the human body is a considerable challenge, as biomedical sensors, such as implantable and wearable self-powered sensors, have recently... 

    Label-free electrochemical microfluidic biosensors: futuristic point-of-care analytical devices for monitoring diseases

    , Article Microchimica Acta ; Volume 189, Issue 7 , 2022 ; 00263672 (ISSN) Ebrahimi, G ; Samadi Pakchin, P ; Shamloo, A ; Mota, A ; de la Guardia, M ; Omidian, H ; Omidi, Y ; Sharif University of Technology
    Springer  2022
    Abstract
    The integration of microfluidics with electrochemical analysis has resulted in the development of single miniaturized detection systems, which allows the precise control of sample volume with multianalyte detection capability in a cost- and time-effective manner. Microfluidic electrochemical sensing devices (MESDs) can potentially serve as precise sensing and monitoring systems for the detection of molecular markers in various detrimental diseases. MESDs offer several advantages, including (i) automated sample preparation and detection, (ii) low sample and reagent requirement, (iii) detection of multianalyte in a single run, (iv) multiplex analysis in a single integrated device, and (v)... 

    Multilayered mesoporous composite nanostructures for highly sensitive label-free quantification of cardiac troponin-i

    , Article Biosensors ; Volume 12, Issue 5 , 2022 ; 20796374 (ISSN) Saeidi, M ; Amidian, M. A ; Sheybanikashani, S ; Mahdavi, H ; Alimohammadi, H ; Syedmoradi, L ; Mohandes, F ; Zarrabi, A ; Tamjid, E ; Omidfar, K ; Simchi, A ; Sharif University of Technology
    MDPI  2022
    Abstract
    Cardiac troponin-I (cTnI) is a well-known biomarker for the diagnosis and control of acute myocardial infarction in clinical practice. To improve the accuracy and reliability of cTnI electrochemical immunosensors, we propose a multilayer nanostructure consisting of Fe3O4-COOH labeled anti-cTnI monoclonal antibody (Fe3O4-COOH-Ab1 ) and anti-cTnI polyclonal antibody (Ab2 ) conjugated on Au-Ag nanoparticles (NPs) decorated on a metal–organic framework (Au-Ag@ZIF-67-Ab2 ). In this design, Fe3O4-COOH was used for separation of cTnI in specimens and signal amplification, hierarchical porous ZIF-67 extremely enhanced the specific surface area, and Au-Ag NPs synergically promoted the conductivity... 

    Bioactive hybrid metal-organic framework (MOF)-based nanosensors for optical detection of recombinant SARS-CoV-2 spike antigen

    , Article Science of the Total Environment ; Volume 825 , 2022 ; 00489697 (ISSN) Rabiee, N ; Fatahi, Y ; Ahmadi, S ; Abbariki, N ; Ojaghi, A ; Rabiee, M ; Radmanesh, F ; Dinarvand, R ; Bagherzadeh, M ; Mostafavi, E ; Ashrafizadeh, M ; Makvandi, P ; Lima, E. C ; Saeb, M. R ; Sharif University of Technology
    Elsevier B.V  2022
    Abstract
    Fast, efficient, and accurate detection of SARS-CoV-2 spike antigen is pivotal to control the spread and reduce the mortality of COVID-19. Nevertheless, the sensitivity of available nanobiosensors to detect recombinant SARS-CoV-2 spike antigen seems insufficient. As a proof-of-concept, MOF-5/CoNi2S4 is developed as a low-cost, safe, and bioactive hybrid nanostructure via the one-pot high-gravity protocol. Then, the porphyrin, H2TMP, was attached to the surface of the synthesized nanomaterial to increase the porosity for efficient detection of recombinant SARS-CoV-2 spike antigen. AFM results approved roughness in different ranges, including 0.54 to 0.74 μm and 0.78 to ≈0.80 μm, showing good... 

    Label-Free real-time detection of HBsAg using a QCM immunosensor

    , Article Clinical Laboratory ; Volume 68, Issue 4 , 2022 , Pages 707-720 ; 14336510 (ISSN) Saffari, Z ; Ghavidel, A ; Ahangari Cohan, R ; Hamidi Fard, M ; Khoobi, M ; Aghasadeghi, M ; Norouzian, D ; Sharif University of Technology
    Verlag Klinisches Labor GmbH  2022
    Abstract
    Background: Hepatitis B virus surface antigen (HBsAg) is an important protein in both diagnosis and prevention of hepatitis B infection. In the current study, a piezoelectric immunosensor based on antibody-antigen interaction was designed to detect HBsAg. A quartz crystal microbalance system was employed to detect antibody-antigen interaction. Methods: At first, an oscillator was designed to measure the resonant frequency affected by the reactants using IC 74LVC1GX04. Antibody against HBsAg was immobilized on 10 MHz AT-cut quartz crystal. The surface modifications were monitored by atomic force microscopy (AFM) and contact angle measurements. Different concentrations of antibody were used... 

    Electrochemical prostate-specific antigen biosensors based on electroconductive nanomaterials and polymers

    , Article Clinica Chimica Acta ; Volume 516 , 2021 , Pages 111-135 ; 00098981 (ISSN) Dowlatshahi, S ; Abdekhodaie, M. J ; Sharif University of Technology
    Elsevier B.V  2021
    Abstract
    Prostate cancer (PCa), the second most malignant neoplasm in men, is also the fifth leading cause of cancer-related deaths in men globally. Unfortunately, this malignancy remains largely asymptomatic until late-stage emergence when treatment is limited due to the lack of effective metastatic PCa therapeutics. Due to these limitations, early PCa detection through prostate-specific antigen (PSA) screening has become increasingly important, resulting in a more than 50% decrease in mortality. Conventional assays for PSA detection, such as enzyme-linked immunosorbent assay (ELISA), are labor intensive, relatively expensive, operator-dependent and do not provide adequate sensitivity.... 

    Serological assays and host antibody detection in coronavirus-related disease diagnosis

    , Article Archives of Virology ; Volume 166, Issue 3 , 2021 , Pages 715-731 ; 03048608 (ISSN) Dowlatshahi, S ; Shabani, E ; Abdekhodaie, M. J ; Sharif University of Technology
    Springer  2021
    Abstract
    Coronaviruses (CoV) are a family of viral pathogens that infect both birds and mammals, including humans. Seven human coronaviruses (HCoV) have been recognized so far. HCoV-229E, -OC43, -NL63, and -HKU1 account for one-third of common colds with mild symptoms. The other three members are severe acute respiratory syndrome (SARS)-CoV, Middle East respiratory syndrome (MERS)-CoV, and SARS-CoV-2. These viruses are responsible for SARS, MERS, and CoV disease 2019 (COVID-19), respectively. A variety of diagnostic techniques, including chest X-rays, computer tomography (CT) scans, analysis of viral nucleic acids, proteins, or whole virions, and host antibody detection using serological assays have... 

    Laboratory detection methods for the human coronaviruses

    , Article European Journal of Clinical Microbiology and Infectious Diseases ; Volume 40, Issue 2 , 2021 , Pages 225-246 ; 09349723 (ISSN) Shabani, E ; Dowlatshahi, S ; Abdekhodaie, M. J ; Sharif University of Technology
    Springer Science and Business Media Deutschland GmbH  2021
    Abstract
    Coronaviruses are a group of envelop viruses which lead to diseases in birds and mammals as well as human. Seven coronaviruses have been discovered in humans that can cause mild to lethal respiratory tract infections. HCoV-229E, HCoV-OC43, HCoV-NL63, and HCoV-HKU1 are the low-risk members of this family and the reason for some common colds. Besides, SARS-CoV, MERS-CoV, and newly identified SARS-CoV-2, which is also known as 2019-nCoV, are the more dangerous viruses. Due to the rapid spread of this novel coronavirus and its related disease, COVID-19, a reliable, simple, fast, and low-cost detection method is necessary for patient diagnosis and tracking worldwide. Human coronaviruses detection... 

    Design of an effective piezoelectric microcantilever biosensor for rapid detection of COVID-19

    , Article Journal of Medical Engineering and Technology ; Volume 45, Issue 6 , 2021 , Pages 423-433 ; 03091902 (ISSN) Kabir, H ; Merati, M ; Abdekhodaie, M. J ; Sharif University of Technology
    Taylor and Francis Ltd  2021
    Abstract
    Acute respiratory syndrome coronavirus 2 (SARS-CoV-2), also called COVID-19, is one of the most contagious viruses resulting in a progressive pandemic. Since specific antiviral treatments have not been developed yet and its fatal rate is almost high, early and fast detection is critical for controlling the outbreak. In this study, a piezoelectric microcantilever biosensor has been designed for detecting COVID-19 samples directly without requiring preparation steps. The biosensor acts as a transducer and is coated with the related antibody. When the SARS-CoV-2 antigens adsorbed on the microcantilever top surface through their spike proteins, a surface stress due to the mass change would be... 

    Comparison between electrochemical and photoelectrochemical detection of dopamine based on titania-ceria-graphene quantum dots nanocomposite

    , Article Biosensors and Bioelectronics ; Volume 151 , 2020 Ahmadi, N ; Bagherzadeh, M ; Nemati, A ; Sharif University of Technology
    Elsevier Ltd  2020
    Abstract
    In this study, titania-ceria-graphene quantum dot (TC-GQD) nanocomposite was synthesized by hydrothermal method for the first time. The prepared nanomaterials were characterized by XRD, FTIR dynamic light scattering (DLS), FESEM, HRTEM, and EDX spectroscopy along with elemental mapping. The synergistic effect of the nanocomposite components was studied by diffuse reflectance spectroscopy (DRS) and electrical conductivity meter. The results showed that band gap of TC-GQD nanocomposite was shifted to visible lights relative to its components (1.3 eV), and electrical conductivity of the sample was significant increased to 89.5 μS cm−1. After chemical and physical characterization, prepared new... 

    Fabrication of a sensitive and fast response electrochemical glucose sensing platform based on co-based metal-organic frameworks obtained from rapid in situ conversion of electrodeposited cobalt hydroxide intermediates

    , Article Talanta ; Volume 210 , 2020 Shahrokhian, S ; Ezzati, M ; Hosseini, H ; Sharif University of Technology
    Elsevier B.V  2020
    Abstract
    In this study, for the first time, we reported a fast and facile three-step in situ strategy for direct controllable growth of the Co3(BTC)2 MOFs thin films on the GCE, through the rapid conversion of the electrodeposited Co(OH)2 nano-flakes on rGO/GCE, to crystalline rectangular bar-shape structures of MOFs. X-ray diffraction spectroscopy, Fourier transform infrared spectroscopy, field emission scanning electron microscopy, energy dispersive X-ray spectroscopy and elemental mapping analysis used to the structural and morphological characterization of the well-synthesized MOFs. The as-prepared Co3(BTC)2 MOFs were used to construct a non-enzymatic sensing platform for determining the glucose... 

    Application of single-nucleotide polymorphisms in the diagnosis of autism spectrum disorders: a preliminary study with artificial neural networks

    , Article Journal of Molecular Neuroscience ; Volume 68, Issue 4 , 2019 , Pages 515-521 ; 08958696 (ISSN) Ghafouri Fard, S ; Taheri, M ; Omrani, M. D ; Daaee, A ; Mohammad Rahimi, H ; Kazazi, H ; Sharif University of Technology
    Springer New York LLC  2019
    Abstract
    Autism spectrum disorder (ASD) includes different neurodevelopmental disorders characterized by deficits in social communication, and restricted, repetitive patterns of behavior, interests or activities. Based on the importance of early diagnosis for effective therapeutic intervention, several strategies have been employed for detection of the disorder. The artificial neural network (ANN) as a type of machine learning method is a common strategy. In the current study, we extracted genomic data for 487 ASD patients and 455 healthy individuals. All individuals were genotyped in certain single-nucleotide polymorphisms within retinoic acid-related orphan receptor alpha (RORA), gamma-aminobutyric... 

    Novel microfluidic graphene oxide–protein amperometric biosensor for detecting sulfur compounds

    , Article Biotechnology and Applied Biochemistry ; Volume 66, Issue 3 , 2019 , Pages 353-360 ; 08854513 (ISSN) Ghaemi, A ; Abdi, K ; Javadi, S ; Shehneh, M. Z ; Yazdian, F ; Omidi, M ; Rashedi, H ; Haghiralsadat, B. F ; Asayeshnaeini, O ; Sharif University of Technology
    Wiley-Blackwell Publishing Ltd  2019
    Abstract
    Sulfur compounds are essential for many industries and organisms; however, they cause serious respiratory problems in human beings. Therefore, determination of sulfur concentration is of paramount importance. The research approach in the field of detecting contaminants has led to smaller systems that provide faster and more effective ways for diagnosis purposes. In this study, a novel portable amperometric graphene oxide–protein biosensor platform is investigated. The main characteristic of this structure is the implementation of a microfluidic configuration. With albumin metalloprotein as the biorecognition element, graphene oxide was synthesized and characterized by transmission electron... 

    Statistical association mapping of population-structured genetic data

    , Article IEEE/ACM Transactions on Computational Biology and Bioinformatics ; Volume 16, Issue 2 , 2019 , Pages 636-649 ; 15455963 (ISSN) Najafi, A ; Janghorbani, S ; Motahari, A ; Fatemizadeh, E ; Sharif University of Technology
    Institute of Electrical and Electronics Engineers Inc  2019
    Abstract
    Association mapping of genetic diseases has attracted extensive research interest during the recent years. However, most of the methodologies introduced so far suffer from spurious inference of the associated sites due to population inhomogeneities. In this paper, we introduce a statistical framework to compensate for this shortcoming by equipping the current methodologies with a state-of-the-art clustering algorithm being widely used in population genetics applications. The proposed framework jointly infers the disease-associated factors and the hidden population structures. In this regard, a Markov Chain-Monte Carlo (MCMC) procedure has been employed to assess the posterior probability... 

    A selective chemiresistive sensor for the cancer-related volatile organic compound hexanal by using molecularly imprinted polymers and multiwalled carbon nanotubes

    , Article Microchimica Acta ; Volume 186, Issue 3 , 2019 ; 00263672 (ISSN) Janfaza, S ; Banan Nojavani, M ; Nikkhah, M ; Alizadeh, T ; Esfandiar, A ; Ganjali, M. R ; Sharif University of Technology
    Springer-Verlag Wien  2019
    Abstract
    A chemiresistive sensor is described for the lung cancer biomarker hexanal. A composite consisting of molecularly imprinted polymer nanoparticles and multiwalled carbon nanotubes was used in the sensor that is typically operated at a voltage of 4 V and is capable of selectively sensing gaseous hexanal at room temperature. It works in the 10 to 200 ppm concentration range and has a 10 ppm detection limit (at S/N = 3). The sensor signal recovers to a value close to its starting value without the need for heating even after exposure to relatively high levels of hexanal  

    An ultrasensitive label free human papilloma virus DNA biosensor using gold nanotubes based on nanoporous polycarbonate in electrical alignment

    , Article Analytica Chimica Acta ; Volume 1048 , 2019 , Pages 31-41 ; 00032670 (ISSN) Shariati, M ; Ghorbani, M ; Sasanpour, P ; Karimizefreh, A ; Sharif University of Technology
    Elsevier B.V  2019
    Abstract
    An impedimetric human papilloma virus (HPV) DNA biosensor based on gold nanotubes (AuNTs) in label free detection was materialized. The AuNTs decorated nanoporous polycarbonate (AuNTs-PC) template as biosensor electrode was fabricated by electrodeposition method. The single strand DNA (ss-DNA) probe was covalently immobilized onto the AuNTs-PC electrode. The hybridization of target sequences with the ss-DNA probe was observed by the electrochemical impedance spectroscopy (EIS). The biosensor showed high selectivity and could differentiate between the complementary, mismatch and non-complementary DNA sequences. The EIS measurements were matched to Randle's equivalent circuit. The... 

    Design and fabrication of an electrochemical aptasensor using Au nanoparticles/carbon nanoparticles/cellulose nanofibers nanocomposite for rapid and sensitive detection of Staphylococcus aureus

    , Article Bioelectrochemistry ; Volume 123 , 2018 , Pages 70-76 ; 15675394 (ISSN) Ranjbar, S ; Shahrokhian, S ; Sharif University of Technology
    Elsevier B.V  2018
    Abstract
    Since that pathogenic bacteria are major threats to human health, this paper describes the fabrication of an effective and durable sensing platform based on gold nanoparticles/carbon nanoparticles/cellulose nanofibers nanocomposite (AuNPs/CNPs/CNFs) at the surface of glassy carbon electrode for sensitive and selective detection of Staphylococcus aureus (S. aureus). The AuNPs/CNPs/CNFs nanocomposite with the high surface area, excellent conductivity, and good biocompatibility was used for self-assembled of the thiolated specific S. aureus aptamer as a sensing element. The surface morphology of AuNPs/CNPs/CNFs nanocomposite was characterized with field emission scanning electron microscopy... 

    A novel model for predicting bioelectrochemical performance of microsized-MFCs by incorporating bacterial chemotaxis parameters and simulation of biofilm formation

    , Article Bioelectrochemistry ; Volume 122 , 2018 , Pages 51-60 ; 15675394 (ISSN) Kalantar, M ; Mardanpour, M. M ; Yaghmaei, S ; Sharif University of Technology
    Elsevier B.V  2018
    Abstract
    Bacterial transport parameters play a fundamental role in microbial population dynamics, biofilm formation and bacteria dispersion. In this study, the novel model was extended based on the capability of microsized microbial fuel cells (MFCs) as amperometric biosensors to predict the cells' chemotactic and bioelectrochemical properties. The model prediction results coincide with the experimental data of Shewanella oneidensis and chemotaxis mutant of P. aeruginosa bdlA and pilT strains, indicating the complementary role of numerical predictions for bioscreening applications of microsized MFCs. Considering the general mechanisms for electron transfer, substrate biodegradation, microbial growth... 

    Direct growth of metal-organic frameworks thin film arrays on glassy carbon electrode based on rapid conversion step mediated by copper clusters and hydroxide nanotubes for fabrication of a high performance non-enzymatic glucose sensing platform

    , Article Biosensors and Bioelectronics ; Volume 112 , 2018 , Pages 100-107 ; 09565663 (ISSN) Shahrokhian, S ; Khaki Sanati, E ; Hosseini, H ; Sharif University of Technology
    Elsevier Ltd  2018
    Abstract
    The direct growth of self-supported metal-organic frameworks (MOFs) thin film can be considered as an effective strategy for fabrication of the advanced modified electrodes in sensors and biosensor applications. However, most of the fabricated MOFs-based sensors suffer from some drawbacks such as time consuming for synthesis of MOF and electrode making, need of a binder or an additive layer, need of expensive equipment and use of hazardous solvents. Here, a novel free-standing MOFs-based modified electrode was fabricated by the rapid direct growth of MOFs on the surface of the glassy carbon electrode (GCE). In this method, direct growth of MOFs was occurred by the formation of vertically... 

    High-performance enzyme-free glucose sensor with Co-Cu nanorod arrays on Si substrates

    , Article Recent Patents on Biotechnology ; Volume 12, Issue 2 , 2018 , Pages 126-133 ; 18722083 (ISSN) Shirinzadeh, H ; Yazdanpanah, A ; Karponis, D ; Aghabarari, B ; Tahmasbi, M ; Seifalian, A ; Mozafari, M ; Sharif University of Technology
    Bentham Science Publishers B.V  2018
    Abstract
    Background: Glucose sensors have been extensively researched in patent studies and manufactured a tool for clinical diabetes diagnosis. Although some kinds of electrochemical enzymatic glucose sensors have been commercially successful, there is still room for improvement, in selectivity and reliability of these sensors. Because of the intrinsic disadvantages of enzymes, such as high fabrication cost and poor stability, non-enzymatic glucose sensors have recently been promoted as next generation diagnostic tool due to their relatively low cost, high stability, prompt response, and accuracy. Objective: In this research, a novel free standing and binder free non-enzymatic electrochemical sensor...