Loading...
Search for: geometrical-parameters
0.006 seconds
Total 56 records

    Experimental kinematic calibration of parallel manipulators using a relative position error measurement system

    , Article Robotics and Computer-Integrated Manufacturing ; Vol. 26, Issue 6 , 2010 , pp. 799-804 ; ISSN: 07365845 Abtahi, M ; Pendar, H ; Alasty, A ; Vossoughi, G ; Sharif University of Technology
    Abstract
    Because of errors in the geometric parameters of parallel robots, it is necessary to calibrate them to improve the positioning accuracy for accurate task performance. Traditionally, to perform system calibration, one needs to measure a number of robot poses using an external measuring device. However, this process is often time-consuming, expensive and difficult for robot on-line calibration. In this paper, a methodical way of calibration of parallel robots is introduced. This method is performable only by measuring joint variable vector and positioning differences relative to a constant position in some sets of configurations that the desired positions in each set are fixed, but the moving... 

    Integration of CFD and Nelder-Mead algorithm for optimization of MOCVD process in an atmospheric pressure vertical rotating disk reactor

    , Article International Communications in Heat and Mass Transfer ; Volume 43 , April , 2013 , Pages 138-145 ; 07351933 (ISSN) Abedi, S ; Farhadi, F ; Boozarjomehry, R. B ; Sharif University of Technology
    2013
    Abstract
    In this work, optimization of metalorganic chemical vapor deposition process for uniform layer thickness with especial attention to reactor geometric parameters as decision variables is presented. A numerical solution to a steady thermal flow associated with multi-species and chemical reactions in atmospheric pressure axisymmetrical rotating disk reactor by the CFD technique is obtained. Such a simulation is conducted on the assumption that the low Mach number flow is laminar. Then the validation of the numerical results with the benchmark solutions is conducted. Finally, integrating the CFD simulator with an optimization program, based on the Nelder-Mead algorithm, as a new approach is... 

    Effects of various parameters on the coating of substrates with trenches

    , Article 2012 International Conference on Advanced Materials Design and Mechanics, ICAMDM 2012, Xiamen, 5 June 2012 through 7 June 2012 ; Volume 569 , 2012 , Pages 219-222 ; 10226680 (ISSN) ; 9783037854808 (ISBN) Mazloomi, A ; Moosavi, A ; Sharif University of Technology
    2012
    Abstract
    We investigate thin liquid film coating of substrates with trenches via lattice Boltzmann method. The effects of different parameters such as the capillary number, the contact angles and geometric parameters on the results are studied. Our results indicate that for trench depths greater than a critical size coating of the trench is not successful. The critical depth increases by decreasing the capillary number. Moreover we find height, width, capillary number and contact angle under which the coating is successful. The results have been compared with the available results and very close agreement has been achieved  

    Optimized design and implementation of low-cost, sensitive and versatile vibrating sample magnetometer

    , Article ICEE 2012 - 20th Iranian Conference on Electrical Engineering, 15 May 2012 through 17 May 2012 ; May , 2012 , Pages 202-205 ; 9781467311489 (ISBN) Hosseini, N ; Khiabani, S ; Sarreshtedari, F ; Fardmanesh, M ; Sharif University of Technology
    2012
    Abstract
    Geometry of different electromagnetic parts of Vibrating Sample Magnetometer (VSM) is a major factor of VSM output voltage. In this paper design, geometry optimization and implementation of a sensitive, versatile and relatively inexpensive VSM system has been described. Considering all effective geometrical parameters in the system output voltage, the induced voltage in the pick-up coils has been obtained analytically and the geometry of the pick-up coils has been optimized for maximum output induced voltage. Two opposite series of pick-up coils, piezoelectric based vibration system and required electronic circuits have been designed and the VSM system has been implemented. The implemented... 

    Determination of geometrical parameters of the dead metal zone and exit curvature profile in the extrusion process of non-symmetrical flat dies

    , Article SAE Technical Papers ; S , 2012 Rastegar, M ; Assempour, A ; Ghazanfari, A ; Sharif University of Technology
    SAE  2012
    Abstract
    To determine the curvature of the exit profile in the extrusion process of non-symmetrical flat dies, the dead metal zone profile was predicted using the energy minimization method. The dead zone is a natural non-linear die for the process and it is pragmatic to use this non-linear die to estimate the value of the exit profile curvature and the required bearing length for reducing this deviation. The velocity field is calculated based on Hermite cubic spline and some additional assumptions. In non-symmetrical dies the entrance section of the deformation region is not flat. Considering this fact, axial velocity decreases with increasing the distance to die center line which is in agreement... 

    Terahertz radiation power characterization and optimization of stack of intrinsic Josephson junctions

    , Article IEEE Transactions on Applied Superconductivity ; Volume 22, Issue 4 , 2012 ; 10518223 (ISSN) Kokabi, A ; Kamrani, H ; Fardmanesh, M ; Sharif University of Technology
    2012
    Abstract
    Terahertz radiation of the stack of intrinsic Josephson junctions in the mesa structure of the layered high- T c superconductors is analyzed and presented in this paper. The dependence of the radiated power to the geometrical parameters, cavity-waveguide boundaries, and magnetic and electric biases has been investigated. This has been done by numerical calculation of the previously proposed coupled sine-Gordon equations, which characterize the electromagnetic dynamics of the stack of the intrinsic Josephson junctions. Using the obtained numerical results from these coupled equations, the effect of the design parameters, such as dimensions of the mesa structure, the magnitude of the applied... 

    Application of the variational iteration method for nonlinear free vibration of conservative oscillators

    , Article Scientia Iranica ; Volume 19, Issue 3 , June , 2012 , Pages 513-518 ; 10263098 (ISSN) Baghani, M ; Fattahi, M ; Amjadian, A ; Sharif University of Technology
    2012
    Abstract
    In this paper, an analytical solution for the nonlinear free vibration of a conservative oscillator is presented. The nonlinear governing equation is solved by employing the Variational Iteration Method (VIM). This method is based on the use of Lagrange multipliers for identification of optimal values of parameters in a function. Obtained results reveal that the proposed method is very effective, simple and exact. In the present investigation, the results of this method are compared with those of the Homotopy Analysis Method (HAM), as well as those predicted by the Runge-Kutta method. The excellent accuracy of the obtained results is demonstrated by comparing them with available analytical... 

    Investigation of particle dispersion and deposition in a channel with elliptic obstructions using lattice Boltzmann method

    , Article 2012 7th IEEE International Conference on Nano/Micro Engineered and Molecular Systems, NEMS 2012, 5 March 2012 through 8 March 2012 ; March , 2012 , Pages 523-528 ; 9781467311243 (ISBN) Tehrani, A ; Moosavi, A ; Sharif University of Technology
    2012
    Abstract
    Particle transport and deposition in a channel flow with elliptic obstruction is studied. Numerical simulation of fluid flow is performed using two-dimensional lattice Boltzmann method, while one-way coupling Lagrangian method for particle tracking is used. Standard particles are injected in the inlet of the channel. Gravity, Drag force, Brownian forces, and the Saffman lift are considered in equation of particle motion. The influence of geometrical parameter, ellipse aspect ratio, is studied on dispersion and deposition of particles as well as the flow parameters, such as Reynolds number. In addition, the effect of particles size -particles of 0.01-10μm in diameter- on dispersion and... 

    Analytical study on size-dependent static pull-in voltage of microcantilevers using the modified couple stress theory

    , Article International Journal of Engineering Science ; Volume 54 , May , 2012 , Pages 99-105 ; 00207225 (ISSN) Baghani, M ; Sharif University of Technology
    2012
    Abstract
    In this paper an analytical solution for size-dependent response of cantilever micro-beams is presented. Using the modified couple stress theory, the small scale effects are accounted for. Employing the Modified Variational Iteration Method, efficient and accurate analytical expressions for the deflection of the micro-beam are presented. Very good agreement is observed between the present work results and available experimental data. This study may be helpful to characterize the size-dependent mechanical properties of MEMS. Consequently, the proposed analytical solution can be used as an efficient tool for studying the effects of the material or geometrical parameters on small scale devices... 

    Assessment of the resonance frequency of cantilever carbon nanocones using molecular dynamics simulation

    , Article Applied Physics Letters ; Volume 100, Issue 17 , 2012 ; 00036951 (ISSN) Firouz Abadi, R. D ; Amini, H ; Hosseinian, A. R ; Sharif University of Technology
    2012
    Abstract
    The resonance frequencies of cantilever carbon nanocones (CNCs) up to 4 nm in height are determined using molecular dynamics simulation based on adaptive intermolecular reactive empirical bond order potential. The frequency content of the free vibrations of CNCs under a lateral initial excitation at the tip is analyzed using fast Fourier transformation, and the resonance frequencies are obtained. The results are reported for various samples to investigate the dependency of the resonance frequency to the geometrical parameters and temperature of CNCs  

    Free-edge stress analysis of general composite laminates under extension, torsion and bending

    , Article Applied Mathematical Modelling ; Volume 36, Issue 4 , 2012 , Pages 1570-1588 ; 0307904X (ISSN) Sarvestani, H. Y ; Sarvestani, M. Y ; Sharif University of Technology
    2012
    Abstract
    In this study, based on the reduced form of elasticity displacement field for a long laminate, an analytical method is established to exactly obtain the interlaminar stresses near the free edges of generally laminated composite plates subjects to extension, torsion, and bending. The constant parameters being in the displacement field, which describe the global deformation of a laminate, are appropriately calculated by using the improved first-order shear deformation theory. Reddy's layerwise theory is subsequently employed for analytical and numerical examinations of the boundary layer stresses within arbitrary laminated composite plates. Various numerical results are developed for the... 

    Opposing trends of geometrical parameters in maximisation of micro-ring resonator quality factor

    , Article Electronics Letters ; Volume 47, Issue 25 , 2011 , Pages 1388-1390 ; 00135194 (ISSN) Jalaly, S ; Rezaei, M ; Mehrany, K ; Sharif University of Technology
    Abstract
    Opposing trends of geometrical parameters in minimisation of bending loss and thus in maximising the quality factor are briefly discussed for micro-ring resonators. It is shown that, while the quality factor of low order modes is an oscillatory function of geometrical parameters, the quality factor of high order modes is a monotonic function. The former has discrete pairs of optimum inner and outer ring radii which maximises the quality factor. In contrast, the quality factor of the latter has no local maximum. Introduction of slight inhomogeneities does not change the overall behaviour of the quality factor but can increase its overall level when the refractive index of the ring region... 

    Toe-to-heel air injection: Investigation of the effect of fractures geometrical properties on process performance

    , Article Energy Sources, Part A: Recovery, Utilization and Environmental Effects ; Volume 33, Issue 22 , Sep , 2011 , Pages 2067-2077 ; 15567036 (ISSN) Fatemi, S. M ; Kharrat, R ; Ghotbi, C ; Sharif University of Technology
    Abstract
    Toe to heel air injection has been studied on non-fractured sandstone models and is found to be a promising enhanced oil recovery method for certain heavy oil reservoirs, such as those in Canada, but its applicability on fractured reservoirs, such as those in the Middle East, is not investigated yet. The objective of this article is to evaluate the effect of fractures geometrical parameters, such as fracture density, orientation, and location, on the performance of the process in laboratory scale. Simulation results showed that toe-to-heel air injection is more applicable on highly networked fractured reservoirs, such as those that occur in Persian Gulf coast compared to lower density... 

    Geometrical optimization of half toroidal continuously variable transmission using particle swarm optimization

    , Article Scientia Iranica ; Volume 18, Issue 5 , 2011 , Pages 1126-1132 ; 10263098 (ISSN) Delkhosh, M ; Saadat Foumani, M ; Boroushaki, M ; Ekhtiari, M ; Dehghani, M ; Sharif University of Technology
    Abstract
    The objective of this research is geometrical optimization of half toroidal Continuously Variable Transmission (CVT) in order to achieve high power transmission efficiency. The dynamic analysis of CVT is implemented and contact between the disk and the roller is modeled viaelastohydrodynamic (EHL) lubrication principles. Computer model is created using geometrical, thermal and kinetic parameters to determine the efficiency of CVT. Results are compared by other models to confirm the model validity. Geometrical parameters are obtained by means of Particle Swarm Optimization (PSO) algorithm, while the optimization objective is to maximize the power transmission efficiency. Optimization was... 

    Effect of tool geometry on mechanical and microstructural behaviours in dissimilar friction stir welding of AA 5086-AA 6061

    , Article Science and Technology of Welding and Joining ; Volume 16, Issue 7 , 2011 , Pages 597-604 ; 13621718 (ISSN) Jamshidi Aval, H ; Serajzadeh, S ; Kokabi, A. H ; Loureiro, A ; Sharif University of Technology
    Abstract
    The aim of this investigation is to study the effect of geometric tool parameters on mechanical and microstructural behaviours during dissimilar friction stir welding of 5 mm thick plates of AA 5086- O and AA 6061-T6. Three tool geometries were used, including a tool with a concave shoulder and a conical probe with three grooves, flat shoulder and threadless cylindrical probe, and a tool with a flat shoulder and a threaded cylindrical probe. It was found that the tool with a concave shoulder and a conical probe with three grooves produces higher heat input and temperatures that provides more homogeneous stir zones than the other tools. In addition, the grain sizes of the stir zone in the AA... 

    Effects of wing geometry on wing-body-tail interference in subsonic flow

    , Article Scientia Iranica ; Volume 18, Issue 3 B , 2011 , Pages 407-415 ; 10263098 (ISSN) Davari, A. R ; Soltani, M. R ; Askari, F ; Pajuhande, H. R ; Sharif University of Technology
    Abstract
    Extensive wind tunnel tests were performed on several wing- body-tail combinations in subsonic flow to study the effects of wing geometric parameters on the flow field over the tail. For each configuration, tail surface pressure distribution, as well as the velocity contour at a plane perpendicular to the flow direction behind the wing was measured. The results show a strong effect of wing to tail span ratio, as well as wing aspect ratio, on the flowfield downstream of the wing. For low sweep wings, as those considered here, wing and body interference effects on the tail are associated with the wing tip vortex and nose-body vortex  

    Numerical investigation of the swirling air diffuser: Parametric study and optimization

    , Article Energy and Buildings ; Volume 43, Issue 6 , June , 2011 , Pages 1329-1333 ; 03787788 (ISSN) Sajadi, B ; Saidi, M. H ; Mohebbian, A ; Sharif University of Technology
    2011
    Abstract
    During the recent decade, high induction diffusers have become more appealing in applications which require relatively high ventilation airflow rates, such as clean rooms. In this research, the effect of geometric parameters on the performance of a specific type of swirling air diffuser is investigated numerically. The results show that although the diffuser slots geometry, namely their angle and aspect ratio, is impressive on the diffuser performance, it is not as important as the swirling blade angle and the performance is almost constant in a wide range of slots specifications. The results also demonstrate that the diffuser performance and the resultant indoor airflow distribution highly... 

    Optimization of geometric parameters of latticed structures using genetic algorithm

    , Article Aircraft Engineering and Aerospace Technology ; Volume 83, Issue 2 , 2011 , Pages 59-68 ; 00022667 (ISSN) Hashemian, A. H ; Kargarnovin, M. H ; Jam, J. E ; Sharif University of Technology
    2011
    Abstract
    Purpose - The purpose of this paper is to analyze a squared lattice cylindrical shell under compressive axial load and to optimize the geometric parameters to achieve the maximum buckling load. Also a comparison between buckling loads of a squared lattice cylinder and a solid hollow cylinder with equal weight, length and outer diameter is performed to reveal the superior performance of the squared lattice cylindrical shells. Design/methodology/ approach - A cylindrical lattice shell includes circumferential and longitudinal rods with geometric parameters such as crosssection areas of the rods, distances and angles between them. In this study, the governing differential equation for buckling... 

    The influence of tool geometry on the thermo-mechanical and microstructural behaviour in friction stir welding of AA5086

    , Article Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science ; Volume 225, Issue 1 , 2011 , Pages 1-16 ; 09544062 (ISSN) Jamshidi Aval, H ; Serajzadeh, S ; Kokabi, A. H ; Sharif University of Technology
    2011
    Abstract
    In this work, the effect of tool geometric parameters on thermo-mechanical behaviour in friction stir welding of AA5086 has been investigated. For doing so, the thermo-mechanical responses of material during welding with different tools have been predicted by a three-dimensional finite-element model using the finite-element code ABAQUS. In addition, welding experiments have been carried out to study the developed microstructures and the mechanical properties of welded alloy. The results show that tool geometry significantly affects the energy input, deformation pattern, plunge force, microstructures, and mechanical properties of the joint. The conical tool with the shoulder angle of 2° has... 

    Performance analysis and optimization of high capacity pulse tube refrigerator

    , Article ASME 2010 10th Biennial Conference on Engineering Systems Design and Analysis, ESDA2010, 12 July 2010 through 14 July 2010 ; Volume 1 , 2010 , Pages 257-263 ; 9780791849156 (ISBN) Ghahremani, A. R ; Roshanghalb, F ; Jahanbakhshi, R ; Saidi, M. H ; Kazemzadeh Hannani, S ; Sharif University of Technology
    Abstract
    High capacity pulse tube refrigerator (HCPTR) is a new generation of cryocoolers tailored to provide more than 250 W of cooling power at cryogenic temperatures. The most important characteristics of HCPTR when compared with other types of pulse tube refrigerators are a powerful pressure wave generator, and an accurate design. In this paper the influence of geometrical and operating parameters on the performance of a double inlet pulse tube refrigerator (DIPTR) is studied. The DIPTR is modeled applying the nodal analysis technique, using mass, momentum and energy conservation equations. The model is able to compute instantaneous flow field throughout the system and calculate cooling capacity...