Loading...
Search for: glucose
0.01 seconds
Total 136 records

    Development of an Intelligent System to Predict and Control Blood Glucose Level in Type 1 Diabetic Patients

    , M.Sc. Thesis Sharif University of Technology Afsharpour, Alireza (Author) ; Bozorgmehri, Ramin (Supervisor)
    Abstract
    All living entities requires energy to continue their lives. In human beings this energy is provide through consumption of food, at first the consumed food gets converted to glucose and the produced glucose enters the blood and then goes to the body cells in which it is used to produce the required energy. The essential hormone which makes it possible to use Glucose for energy production is INSULIN. In the patients suffering from Type 1 Diabetes, lack of Insulin production makes it impossible for the cells to use Glucose for the production of their required energy. In these patients due to the fact that the blood Glucose is not used by the cells, the Blood Glucose Level (BGL) increases,... 

    Numerical Simulation of Glucose Metabolism and Hepatocyte Viability within a Microfluidic

    , M.Sc. Thesis Sharif University of Technology Nejadnasrollah, Farzam (Author) ; Firoozabadi, Bahar (Supervisor)
    Abstract
    The advent of microfluidics as suitable environments for culturing cells is associated with some challenges such as shear stresses applied on the cells. In fact, hepatocytes lose their function as exposed to high shear stresses similar to other cell types. Moreover, among all factors needed for cell viability, feeding hepatocytes with adequate oxygen is of great importance due to their high demand for oxygen compared the other cells. In this thesis, different types of cultures including 2D and 3D has been used in order that shear stresses would be in allowed range and provision of hepatocytes with sufficient oxygen concentrations has been ensured as well. In addition to supplying hepatocytes... 

    Fabrication of Enzyme Biosensor for Heavy Metal Detection

    , M.Sc. Thesis Sharif University of Technology Jahangirzadeh, Mir Ali (Author) ; Borghei, Mehdi (Supervisor) ; Sabzi, Reza (Supervisor)
    Abstract
    In this project identification of heavy metals has been studied by using glucose oxidase enzyme. Measurement of heavy metals such as mercury (II) nitrate, lead (II) nitrate and cadmium nitrate are based on inhibitory of glucose oxidase enzyme. To do this, two modified electrodes has stabilized on a graphite electrode. Nanocomposite of single wall carbon nanotube with Nile Blue is foundation of the first working electrode. Biological component of the electrode is glucose oxidase enzyme that bovine serum albumin and glutaraldehyde are helping enzyme in immobilization and these materials cause enzyme to cross link with the foundation. This biosensor has great stability and suitable linear... 

    Electrodeposition of Pt nanostructures and its Application as Glucose Sensor

    , Ph.D. Dissertation Sharif University of Technology Mahshid, Sahar Sadat (Author) ; Dolati, Abolghasem (Supervisor) ; Ghorbani, Mohammad (Supervisor)
    Abstract
    The present work describes sensing application of modified Pt nanostructures towards detection of glucose. Modified Pt nanostructured electrodes were prepared using electrodeposition method such as chronoampermetry and potentiostatic pulse methods. The electrodeposition of Pt nanostructures was first studied by voltammetry and amperommetry techniques and then potentiostatic pulse method has been used to produce the alloyed structures of platinum. In this regard, the first electrode was proposed based on alloyed Pt/Ni nanowire arrays (NWAs) for the non-enzymatic detection of glucose. The Pt/Ni NWAs were prepared by pulse electrodeposition of Pt and Ni within a nano-pore polycarbonate (PC)... 

    The Immobilization of Saccharides onto the Magnetic Nanoparticles of Fe3O4 and its Application as an Efficient Ligand for Support and Stabilization of Metallic Cations in Organic Reactions such as Synthesis of 1, 2, 3-Triazoles & 2-Substituted Benzoxazoles

    , M.Sc. Thesis Sharif University of Technology Kalhor, Sepideh (Author) ; Matlubi Moghaddam، Firouz (Supervisor)
    Abstract
    One of the most challengeable topic in the field of green chemistry is the synthesis of organic structure in water. In this project immobilized glucose on Fe3O4 was prepared as a nano heterogeneous dispersive catalyst in water. The catalyst was fully characterized by FT-IR, TGA, CHN, SEM, EDX and atomic absorption spectroscopy. The synthesized catalyst was used in the synthesis of different derivatives of 1,2,3-triazole via one-pot three component reaction of alkynes, alkyl halides, sodium azides; And to the best of our knowledge this novel catalyst coin sides to the principles of green chemistry. This nano catalyst can be recycled and reused for several runs without significant loss of its... 

    Frequency Domain HF on-chip Impedance Spectroscope with Over 10 bit Resolution

    , M.Sc. Thesis Sharif University of Technology Bakhshiani, Mehran (Author) ; Atarodi, Mojtaba (Supervisor) ; Mehrani, Khashayar (Supervisor)
    Abstract
    Impedance spectroscopy is known as one of the important integrated sensing methods in micro scale Biosensors and electrochemical sensors. Recently, Impedance spectroscopy has been noticed in many micro scale applications. These micro scale applications is being developed specially in bioelectronics and biomedical. The goal of this thesis is designing an on-chip impedance spectroscope system for high frequency with 10 bits resolution via fully electrical blood glucose concentration measurement. This system extracts the blood glucose concentration data through measuring the permittivity coefficient of blood at 1 GHz frequency. In this thesis, new method for high frequency high resolution... 

    Theoretical Investigation of Hydrogen Bonding Effects on Interaction of Metal Nanoclusters with Biomolecules & Acidity Enhancement of Alcohols

    , Ph.D. Dissertation Sharif University of Technology Ali Akbar Tehrani, Zahra (Author) ; Fattahi, Alireza (Supervisor) ; Mahmoodi Hashemi, Mohammad (Supervisor) ; Jamshidi, Zahra (Co-Advisor)
    Abstract
    This thesis is divided into three parts: In part I, conformational properties of neutral, anionic, cationic and zwitterionic forms of glutathione tripeptide were investigated by means of DFT-B3LYP method with 6-31+G (d,p) basis set. Results show that glutathione is a very flexible molecule and its conformational energy landscape is strongly influenced by forming intramolecular hydrogen bond and its charge. Conformation of each amino acid in glutathione tripeptide depends on its orientation within the peptide sequence in addition to the conformation of other amino acids within the chain. Investigation of intramolecular hydrogen bonds in these conformers by means of AIM analysis demonstrates... 

    Blood Glucose Control in Human Body Using Model-Based Controllers

    , M.Sc. Thesis Sharif University of Technology Abedini Najafabadi, Hamed (Author) ; Shahrokhi, Mohammad (Supervisor)
    Abstract
    Continous blood glucose control has great importance for type 1 dyabetic patients. In this thesis, several types of controllers including: PI controller, model predictive controller base on state space model, linear model predictive controller base of linear input-output model and non-linear model predictive controller base of Hammerstein model have been used to regulate blood glucose of patients with type 1 diabetes. These models are identified using least squars method. Performance of these controllers is tested and the best one is introduced. For rejecting meal disturbances, a feedforward controller has been designed. Combination of feedback and feedforward controller would properly... 

    Management and Treatment of Diabetes Artificial Neural Networks Controllers

    , M.Sc. Thesis Sharif University of Technology Delrobaee, Ahmad (Author) ; Seifipour, Navid (Supervisor)
    Abstract
    Diabetes is a global problem as a silent epidemic disorder. Diabetes Mellitus has involved at least five percent of our population. It will cause so many complications and end-organs effects if it is not controlled. Today, treatment and control of diseases using computational intelligent systems has been paid a lot of attention to. That’s why this study has taken treatment and control of diabetes into consideration. So, the neural networks have been used to manage and treat diabetes. To do this, real data from diabetic patients has been gathered and based on the data, a model has been obtained to show the effect of insulin on the amount of blood glucose. Then, a neural network controller has... 

    PEC Sensing of Glucose Using one Dimensional TiO2 Nanostructure Modified by Two Dimensional Material

    , M.Sc. Thesis Sharif University of Technology Saadati, Ali Akbar (Author) ; Naseri, Naimeh (Supervisor)
    Abstract
    In this study, one dimensional titanium dioxide nanostructures including nanotube and nanowire were synthesized by anodization and hydrothermal methods respectively and were used for PEC glucose sensing. Meanwhile various length of nanotubes was investigated toward glucose sensing. Finally, nanotubes with the length of 2.7 µm were selected as the optimum sample. Finally, to improve sensitivity toward glucose, TiO2 nanotubes were modified by graphene oxide nanosheets which caused several percent increase in PEC sensing performances. In the next stage branched TiO2 nanowires were grew on FTO substrate in various conditions. In spite of acceptable reproducibility of this structure,... 

    Fabrication of Hybrid Graphene/Metal Electrodes for Biosensor Applications

    , M.Sc. Thesis Sharif University of Technology Mohammadzadeh, Amirmahdi (Author) ; Simchi, Abdolreza (Supervisor)
    Abstract
    Electrochemical sensing of glucose has received paramount attention in recent years, particularly, the non-enzymatic glucose sensing is one of the trends in the whole biosensing world. In this research, synthesis and evaluation of a hybrid structure of vertical oriented nickel nanorod-reduced graphene oxide sheets as a non-enzymatic glucose sensor were performed. The 3D array of nickel nanorods was synthesized by electrodeposition of nickel sulfate electrolyte in track-etched polycarbonate template with 100 nm pore size and 6-10 μm thickness. The electrodeposition performed in various conditions, and the best result was achieved by application of potential of 3 V for 60 minutes. The shiny... 

    Study of CNT/ZnO/PANI Nanocomposite Biosensors

    , M.Sc. Thesis Sharif University of Technology Yazdanbakhsh Sorkhabi, Khashayar (Author) ; Dolati, Abolghasem (Supervisor)
    Abstract
    For application as a biosensor electrode, Aligned Carbon Nanotubes (CNTs) were produced on Stainless Steel 304 substrate by optimizing the CVD method. For better performance, Zinc Oxide (ZnO) nanoparticles were coated on CNTs, using electrochemical deposition method at room temperature and process variables were optimized to acquire discrete particles with a narrow distribution. After that, Polyaniline, which is a conductive polymer, was electropolymerized on CNT/ZnO composite to further improve the electrocatalytic abilities of the electrode. The produced electrode was then used to detect glucose by Cyclic Voltammetry and Amperometry methods. This electrode shows a linear relationship... 

    Design of Low Frequency High Resolution Integrated Bioimpedance Meter

    , M.Sc. Thesis Sharif University of Technology Kaveh, Mohammad (Author) ; Atarodi, Mojtaba (Supervisor) ; Mehrany, Khashayar (Supervisor)
    Abstract
    This thesis activities, consists of three main parts. The first part is, manufacturing and optimization of the electrical part of blood glucose measurement devices, based on electrochemical sensors. In this part, design of blood glucose measurement systems based on two and three electrode electrochemical sensors are proceeded and the accuracy of the electrical block, is increased up to 1mg/dl according to sensor current range. The second part, is related to the design of different probes for blood electrical characteristics (impedance magnitude) measurements, at low frequencies. Measurements with these probes show, first the blood impedance magnitude range at low frequencies and moreover,... 

    Factors Explaining the Intention of Blood Sugar Measurement with Self Monitoring of Blood Glucose

    , M.Sc. Thesis Sharif University of Technology Asadnezhad, Pouria (Author) ; Kiamehr, Mehdi (Supervisor)
    Abstract
    This study seeks to investigate the factors affecting consumer behavior when using a home blood glucose tester. Most of the previous research has been on improving the performance of home medical equipment to measure vital parameters such as pressure, sugar, oxygen, etc. They have also taken steps to increase the possibility of learning and easy use of the product, which only examines consumer behavior during use .In order to achieve this goal, the theory of planned behavior has been used. In this behavioral theory, the intention to perform a specific behavior, which in this study is the monitoring of blood sugar by the patient, is examined. Behavioral intent is the attitude towards use,... 

    Blood Glucose Control for Type 1 Diabetes Patients with Explicit Model Predictive Control (MPC)

    , M.Sc. Thesis Sharif University of Technology Shahzadeh Fazeli, Ali (Author) ; Alasty, Aria (Supervisor) ; Vahidi, Omid (Co-Supervisor)
    Abstract
    Blood glucose regulation in type 1 diabetes patients requires the delivery of the proper amount of insulin from an external source. The literature of Blood Glucose Control signifies the superiority of model-based controllers over the other ones. Regarding its lack of need to complicated on-line calculations and the simplicity of its implementation on a micro-chip, the explicit Model Predictive Controller is preferred over the implicit MPC. Currently proposed explicit MPC controllers have employed relatively simple models representing human glucose-insulin dynamics. In this thesis, an explicit MPC controller is designed using mp-QP based on Sorensen’s 19-state comprehensive model which has... 

    Fabrication of Composite Electrode Materials Based on Bi-Metalic Metal-Organic Frameworks for Designation of Amperometric Non-Enzymatic Glucose Sensors

    , M.Sc. Thesis Sharif University of Technology Ataei Kachouei, Matin (Author) ; Shahrokhian, Saeed (Supervisor)
    Abstract
    In the present study, the method of direct growth was used to grew bi-metalic MOFs based on cobalt and zinc, as electroactive centers, for preparing electrochemical sensors for the determination of glucose. In comparison to most of the electrochemical sensing platforms based on MOFs for determining glucose, which suffer from some disadvantages like time-consuming synthesis procedures and using hazardous organic solvents, the proposed in-situ growth method is much faster and without any need to toxic organic solvents. Herein, cobalt and zinc-based MOFs were grown on the surface of glassy carbon electrode by the direct and rapid conversion of layered double hydroxide nanosheets intermediates.... 

    Constructing and Investigation of the Electrochemical Behavior of Nanocomposite of Conducting Polymers on Copper Hydroxide Nanotubes; Application to Determination of Glucose

    , M.Sc. Thesis Sharif University of Technology Manafi, Reza (Author) ; Shahrokhian, Saeed (Supervisor)
    Abstract
    A novel amperometric non-enzymatic glucose (NEG) sensor is designed by a facile preparation method. It is made by electrodeposition of Cu clusters and converting them to Cu(OH)2 nanotubes (Cu(OH)2NTs) arrays along with thin-film electro-polymerized of spindle-shaped polypyrrole (PPy@Cu(OH)2NTs), which have been doped by using sodium Benzene-1,3- disulfonate as an anion dopant. The electrochemical performance of the modified electrode toward glucose detection is investigated by various electrochemical methods. Under the optimized conditions, a significant electrochemical response improvement is observed toward the electro-oxidation of glucose on the surface of PPy@Cu(OH)2NTs electrode... 

    Design and Fabrication Nanocomposite Modified Electrode Materials Based on Transition Metal Phosphide Using Copper Hydroxide Nanotubes as a Catalytic Substrate for Glucose Sensing in Non-Enzymatic Sensors

    , M.Sc. Thesis Sharif University of Technology Kazemi Abatari, Zeynab (Author) ; Shahrokhian, Saeed (Supervisor)
    Abstract
    In this study, transition metal phosphide, with a high accessible surface and abundant electroactive centers, was used as an electrocatalyst to fabrication an electrochemical sensor of Gloucose. The direct growth of thin film of nanocomposite can be considered as an efficient method to modify the electrode surface, and the application of these modified electrodes as electrochemical sensors. nanocomposite of transition metal phosphide (CuCoP) were directly grown on Cu(OH)2 nanotubes (as-prepared on GCE) in order to design hierarchical core-shell nanostructure with using efficient, inexpensive and fast method. Here, Cu(OH)2 nanotubes not only served as substrate, but also steer the CuCoP to... 

    Design and Computational Evaluation of Sugar-Amino Acid Conjugates as CK2α Inhibitor

    , M.Sc. Thesis Sharif University of Technology Nonanal Nahr, Milad (Author) ; Fattahi, Alireza (Supervisor)
    Abstract
    The aim of this study is to devise innovative compounds that impede the function of CK2α enzyme by incorporating amino acids and sugars into their molecular structure. CK2α, a catalytic subunit of CK2 enzyme, operates autonomously and is the only continuously active kinase that does not require an upstream regulator. Emerging evidence highlights CK2α's crucial role in various cancers and infectious diseases, including Covid-19, indicating that suppressing its function could provide a promising approach to improve patient outcomes. To accomplish this objective, the drug design process must take into account both pharmacokinetic and pharmacodynamic properties. Pharmacokinetics, encompassing... 

    CNT Modified Coatings for Glucose Sensing

    , M.Sc. Thesis Sharif University of Technology Partovi, Parisa (Author) ; Dolati, Abolghasem (Supervisor)
    Abstract
    This research describes a new and relatively general method to grow well-aligned carbon nanotubes (CNTs) on cobalt-deposited stainless steel by thermal chemical vapor deposition (CVD) of ethylenediamine precursor. The CNTs are vertically aligned at high density over large areas on the surface. Different effective parameters in growth of carbon nanotubes, as type of substrate, surface treatment, temperature of growth , feeding carbon supplies have been studied. Finally, aligned carbon nanotubes have been prepared by 100-150 nm diameter and 9µ length. CoOx•nH2O–MWCNTs nanocomposites were successfully synthesized, using a cathodic electrochemical reduction of H2O2 to deposit cobalt...