Loading...
Search for: governing-differential-equations
0.008 seconds
Total 52 records

    Relief of edge effects in bi-adhesive composite joints

    , Article Composites Part B: Engineering ; Volume 108 , 2017 , Pages 153-163 ; 13598368 (ISSN) Yousefsani, S. A ; Tahani, M ; Sharif University of Technology
    Elsevier Ltd  2017
    Abstract
    Three-dimensional thermo-mechanical stress analysis of composite joints with bi-adhesive bonding is presented using the full layerwise theory. Based on three-dimensional elasticity theory, sets of fully coupled governing differential equations are derived using the principle of minimum total potential energy and are simultaneously solved using the state space approach. Results show that bi-adhesive bonding substantially relieves the edge effects. Moreover, series of parametric studies reveal the nonlinear effects of bonding length ratio and the relative stiffness and coefficient of thermal expansion of the mid- and side-adhesives. It is also concluded that the optimum design of a bi-adhesive... 

    Vibration analysis of a new type of compliant mechanism with flexible-link, using perturbation theory

    , Article Mathematical Problems in Engineering ; Volume 2012 , February , 2012 ; 1024123X (ISSN) Viliani, N. S ; Zohoor, H ; Kargarnovin, M. H ; Sharif University of Technology
    2012
    Abstract
    Vibration analysis of a new type of compliant parallel mechanism with flexible intermediate links is investigated. The application of the Timoshenko beam theory to the mathematical modeling of the intermediate flexible link is described, and the equations of motion of the flexible links are obtained by using Lagrange's equation of motion. The equations of motion are obtained in the form of a set of ordinary differential equations by using assumed mode method theory. The governing differential equations of motion are solved using perturbation method. The assumed mode shapes and frequencies are to be obtained based on clamped-clamped boundary conditions. Comparing perturbation method with... 

    Optimization of reaction rate parameters in modeling of heavy paraffins dehydrogenation

    , Article World Academy of Science, Engineering and Technology ; Volume 79 , 2011 , Pages 389-393 ; 2010376X (ISSN) Vafajoo, L ; Khorasheh, F ; Nakhjavani, M. H ; Fattahi, M ; Sharif University of Technology
    2011
    Abstract
    In the present study, a procedure was developed to determine the optimum reaction rate constants in generalized Arrhenius form and optimized through the Nelder-Mead method. For this purpose, a comprehensive mathematical model of a fixed bed reactor for dehydrogenation of heavy paraffins over Pt-Sn/Al 2O 3 catalyst was developed. Utilizing appropriate kinetic rate expressions for the main dehydrogenation reaction as well as side reactions and catalyst deactivation, a detailed model for the radial flow reactor was obtained. The reactor model composed of a set of partial differential equations (PDE), ordinary differential equations (ODE) as well as algebraic equations all of which were solved... 

    Anti-plane shear of an arbitrary oriented crack in a functionally graded strip bonded with two dissimilar half-planes

    , Article Theoretical and Applied Fracture Mechanics ; Volume 54, Issue 3 , 2010 , Pages 180-188 ; 01678442 (ISSN) Torshizian, M. R ; Kargarnovin, M. H ; Sharif University of Technology
    2010
    Abstract
    An internal crack located within a functionally graded material (FGM) strip bonded with two dissimilar half-planes and under an anti-plane load is considered. The crack is oriented in an arbitrary direction. The material properties of strip are assumed to vary exponentially in the thickness direction and two half-planes are assumed to be isotropic. Governing differential equations are derived and to reduce the difficulty of the problem dealing with solution of a system of singular integral equations Fourier integral transform is employed. Semi closed form solution for the stress distribution in the medium is obtained and mode III stress intensity factor (SIF), at the crack tip is calculated... 

    Mechanical behavior analysis of size-dependent micro-scaled functionally graded Timoshenko beams by strain gradient elasticity theory

    , Article Composite Structures ; Volume 102 , 2013 , Pages 72-80 ; 02638223 (ISSN) Tajalli, S. A ; Rahaeifard, M ; Kahrobaiyan, M. H ; Movahhedy, M. R ; Akbari, J ; Ahmadian, M. T ; Sharif University of Technology
    2013
    Abstract
    In this paper, a size-dependent formulation is developed for Timoshenko beams made of functionally graded materials (FGMs). The developed formulation is based on the strain gradient theory; a non-classical continuum theory able to capture the size-effect in micro-scaled structures. Five new equivalent length scale parameters are introduced as functions of the constituents' length scale parameters. It is shown that the size-dependent static and dynamic behavior of FG micro-beams can be described using these equivalent length scales. The governing differential equations of motion and both classical and non-classical sets of boundary conditions are derived for the proposed strain gradient FG... 

    Mechanical behavior analysis of micro-scaled functionally graded timoshenko beams by the strain gradient theory

    , Article Proceedings of the ASME Design Engineering Technical Conference ; Volume 5 , 2012 , Pages 67-73 ; 9780791845042 (ISBN) Tajalli, S. A ; Kahrobaiyan, M. H ; Rahaeifard, M ; Ahmadian, M. T ; Movahhedy, M. R ; Akbari, J ; Sharif University of Technology
    2012
    Abstract
    In this paper, a size-dependent formulation is developed for Timoshenko beams made of functionally graded materials (FGM). The developed formulation is based on the strain gradient theory;a non-classical continuum theory able to capture the size-effect in micro-scaled structures. Considering the material length scale parameters of the FG beams vary through the thickness, the new equivalent length scale parameters are proposed as functions of the constituents' length scale parameters to describe the size-dependent static and dynamic behavior of FG microbeams. The governing differential equations of equilibrium and both classical and nonclassical sets of boundary conditions are derived for the... 

    Static pull-in analysis of electrostatically actuated functionally graded micro-beams based on the modified strain gradient theory

    , Article International Journal of Applied Mechanics ; Volume 10, Issue 3 , 2018 ; 17588251 (ISSN) Taati, E ; Sina, N ; Sharif University of Technology
    World Scientific Publishing Co. Pte Ltd  2018
    Abstract
    In this paper, the static pull-in behavior of electrostatically actuated functionally graded (FG) micro-beams resting on an elastic medium is studied using the modified strain gradient (MSG) theory. To this end, the equilibrium equation along with classical and non-classical boundary conditions is obtained by considering the fringing field and elastic foundations effects within the principle of minimum total potential energy. Also, the elastic medium is composed of a shear layer (Pasternak foundation) and a linear normal layer (Winkler foundation). The governing differential equation is solved for cantilever and doubly fixed FG beams using an iterative numerical method. This method is a... 

    Nonlinear normal modes of axial-torsional vibrations of rotating thin walled composite beam

    , Article International Conference on Noise and Vibration Engineering 2012, ISMA 2012, including USD 2012: International Conference on Uncertainty in Structure Dynamics, 17 September 2012 through 19 September 2012 ; Volume 4 , September , 2012 , Pages 2547-2556 ; 9781622768257 (ISBN) Sina, S ; Kerschen, G ; Haddadpour, H ; Katholieke Universiteit Leuven ; Sharif University of Technology
    Katholieke Universiteit Leuven  2012
    Abstract
    The aim of this study is to carry out the numerical computation of nonlinear normal modes for rotating pretwisted composite thin-walled beam in axial-torsional vibrations. The structural model considered here, incorporates a number of non-classical effects such as primary and secondary warping, non-uniform torsional model, rotary inertia and pretwist angle. Ignoring the axial inertia term leads to differential equation of motion in terms of angle of twist in the case of axially immovable beam ends. The governing differential equations of motion are derived using Hamilton's principle and the reduced model around the static equilibrium position is obtained using 2-mode Galerkin discretization... 

    Strain gradient elasticity solution for functionally graded micro-cylinders

    , Article International Journal of Engineering Science ; Volume 50, Issue 1 , January , 2012 , Pages 22-30 ; 00207225 (ISSN) Sadeghi, H ; Baghani, M ; Naghdabadi, R ; Sharif University of Technology
    2012
    Abstract
    In this paper, strain gradient elasticity formulation for analysis of FG (functionally graded) micro-cylinders is presented. The material properties are assumed to obey a power law in radial direction. The governing differential equation is derived as a fourth order ODE. A power series solution for stresses and displacements in FG micro-cylinders subjected to internal and external pressures is obtained. Numerical examples are presented to study the effect of the characteristic length parameter and FG power index on the displacement field and stress distribution in FG cylinders. It is observed that the characteristic length parameter has a considerable effect on the stress distribution of FG... 

    Dynamic response of a non-uniform Timoshenko beam, subjected to moving mass

    , Article Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science ; Volume 229, Issue 14 , October , 2015 , Pages 2499-2513 ; 09544062 (ISSN) Roshandel, D ; Mofid, M ; Ghannadiasl, A ; Sharif University of Technology
    SAGE Publications Ltd  2015
    Abstract
    In this article, the dynamic response of a non-uniform Timoshenko beam acted upon by a moving mass is extensively investigated. To this end, the eigenfunction expansion method is adapted to the problem, employing the natural mode shapes of a uniform Timoshenko beam. Moreover, the orthonormal polynomial series expansion method is successfully applied to the coupled set of governing differential equations pertaining to the dynamic behavior of non-uniform Timoshenko beam actuated by a moving mass. Some numerical examples are solved in which the excellent agreement of the two presented methods is illustrated  

    Modeling and analytical solution of hybrid thermopiezoelectric micro actuator and performance study under changing of different parameters

    , Article Mechanics of Advanced Materials and Structures ; Volume 22, Issue 10 , Mar , 2015 , Pages 785-793 ; 15376494 (ISSN) Pourrostami, H ; Kargarnovin, M. H ; Zohoor, H ; Sharif University of Technology
    Taylor and Francis Inc  2015
    Abstract
    Micro actuators are an irreplaceable part of motion control in miniaturized systems and are intended to have a high range of deformation, high accuracy, large force, and quick response. In this article, an analytical model for a hybrid thermopiezoelectric micro actuator is developed in which a double lead-zirconnate-titanate piezoceramic (PZT) beam structure consisting of two arms with different lengths are used. Governing differential equation of motion and electrical field are derived and solved. Out of parametric studies it was observed that, under application of temperature and voltage gradients, the deflection of the actuator shows different trends depending on the geometry of the micro... 

    Non-linear vibration analysis of laminated composite plates resting on non-linear elastic foundations

    , Article Journal of the Franklin Institute ; Volume 348, Issue 2 , March , 2011 , Pages 353-368 ; 00160032 (ISSN) Pirbodaghi, T ; Fesanghary, M ; Ahmadian, M. T ; Sharif University of Technology
    2011
    Abstract
    In this study, the homotopy analysis method (HAM) is used to obtain an approximate analytical solution for geometrically non-linear vibrations of thin laminated composite plates resting on non-linear elastic foundations. Geometric non-linearity is considered using von Karman's straindisplacement relations. Then, the effects of the initial deflection, ply properties, aspect ratio of the plate and foundation parameters on the non-linear free vibration is studied. Comparison between the obtained results and those available in the literature demonstrates the potential of HAM for the analysis of such vibration problems, whose governing differential equations include the quadratic and cubic... 

    Parametric study of the dynamic response of thin rectangular plates traversed by a moving mass

    , Article Acta Mechanica ; Volume 223, Issue 1 , September , 2012 , Pages 15-27 ; 00015970 (ISSN) Nikkhoo, A ; Rofooei, F. R ; Sharif University of Technology
    2012
    Abstract
    The governing differential equation of motion of a thin rectangular plate excited by a moving mass is considered. The moving mass is traversing on the plate's surface at arbitrary trajectories. Eigenfunction expansion method is employed to solve the constitutive equation of motion for various boundary conditions. Approximate and exact expressions of the inertial effects are adopted for the problem formulation. In the approximate formulation, only the vertical acceleration component of the moving mass is considered while in the exact formulation all the convective acceleration components are included in the problem formulation as well. Parametric studies are carried out to investigate the... 

    A novel model for analysis of multilayer graphene sheets taking into account the interlayer shear effect

    , Article Meccanica ; Volume 53, Issue 11-12 , 2018 , Pages 3061-3082 ; 00256455 (ISSN) Nikfar, M ; Asghari, M ; Sharif University of Technology
    Springer Netherlands  2018
    Abstract
    In this study, a multiplate shear model is developed for dynamic analysis of multilayer graphene sheets with arbitrary shapes considering the interlayer shear effect. By utilizing the model, then some free-vibration analysis is presented. According to the experimental results, the weak interlayer van der Waals interaction cannot maintain the integrity of carbon atoms in adjacent layers. Therefore, it is required that the interlayer shear effect is accounted to study multilayer graphene mechanical behavior. The governing differential equation of motion is derived for the multilayer graphene sheets utilizing a variational approach based on the Kirchhoff plate model. The essential and natural... 

    On the free vibration response of rectangular plates, partially supported on elastic foundation

    , Article Applied Mathematical Modelling ; Volume 36, Issue 9 , September , 2012 , Pages 4473-4482 ; 0307904X (ISSN) Motaghian, S ; Mofid, M ; Akin, J. E ; Sharif University of Technology
    2012
    Abstract
    Rectangular plates on distributed elastic foundations are widely employed in footings and raft foundations of variety of structures. In particular, mounted columns and single footings may partially occupy the rectangular plate of any kind. This study deals with free vibration problem of thin rectangular plates on Winkler and Pasternak elastic foundation model which is distributed over a particular arbitrary area of the plate. Closed form solutions are developed through solving the governing differential equations of plates. Moreover, a novel mathematical approach is proposed to find the exact analytical solution of free vibration of plates with mixed or fully-clamped boundary conditions.... 

    Introducing structural approximation method for modeling nanostructures

    , Article Journal of Computational and Theoretical Nanoscience ; Vol. 7, Issue 2 , 2010 , p. 423-428 ; ISSN: 15461955 Momeni, K ; Alasty, A ; Sharif University of Technology
    Abstract
    In this work a new method for analyzing nanostructured materials has been proposed to accelerate the simulations for solid crystalline materials. The proposed Structural Approximation Method (SAM) is based on Molecular Dynamics (MD) and the accuracy of the results can also be improved in a systematic manner by sacrificing the simulation speed. In this method a virtual material is used instead of the real one, which has less number of atoms and therefore fewer degrees of freedom, compared to the real material. The number of differential equations that must be integrated in order to specify the state of the system will decrease significantly, and the simulation speed increases. To generalize... 

    Introducing structural approximation method for modeling nanostructures

    , Article Journal of Computational and Theoretical Nanoscience ; Volume 7, Issue 2 , February , 2010 , Pages 423-428 ; 15461955 (ISSN) Momeni, K ; Alasty, A ; Sharif University of Technology
    2010
    Abstract
    In this work a new method for analyzing nanostructured materials has been proposed to accelerate the simulations for solid crystalline materials. The proposed Structural Approximation Method (SAM) is based on Molecular Dynamics (MD) and the accuracy of the results can also be improved in a systematic manner by sacrificing the simulation speed. In this method a virtual material is used instead of the real one, which has less number of atoms and therefore fewer degrees of freedom, compared to the real material. The number of differential equations that must be integrated in order to specify the state of the system will decrease significantly, and the simulation speed increases. To generalize... 

    An innovative series solution for dynamic response of rectangular Mindlin plate on two-parameter elastic foundation, with general boundary conditions

    , Article European Journal of Mechanics, A/Solids ; Volume 88 , 2021 ; 09977538 (ISSN) Mohammadesmaeili, R ; Motaghian, S ; Mofid, M ; Sharif University of Technology
    Elsevier Ltd  2021
    Abstract
    In this paper, a new analytical approach is proposed for free vibration and buckling analysis of a rectangular Mindlin plate resting on the Winkler–Pasternak foundation of varying stiffness. According to Mindlin theory, there are three independent governing differential equations. Thus, three Fourier series expansions along with auxiliary polynomial functions are employed to represent the plate's deflection and rotation angle functions. The process of making a set of equations is then completed satisfying the corresponding equilibrium equations and boundary conditions. The proposed method incorporates general elastic supports for all plate's edges, and subsequently can deal with all possible... 

    Free vibration analysis of functionally graded coupled circular plate with piezoelectric layers

    , Article Journal of Mechanical Science and Technology ; Volume 23, Issue 8 , 2009 , Pages 2008-2021 ; 1738494X (ISSN) Mehrabadi, S. J ; Kargarnovin, M. H ; Najafizadeh, M. M ; Sharif University of Technology
    2009
    Abstract
    Based on classical plate theory (CLPT), free vibration analysis of a circular plate composed of functionally graded material (FGM) with its upper and lower surfaces bounded by two piezoelectric layers was performed. Assuming that the material properties vary in a power law manner within the thickness of the plate the governing differential equations are derived. The distribution of electric potential along the thickness direction in piezoelectric layers is considered to vary quadratically such that the Maxwell static electricity equation is satisfied. Then these equations are solved analytically for two different boundary conditions, namely clamped and simply supported edges. The validity of... 

    On nonlinear perturbation analysis of a structure carrying a circular cylindrical liquid tank under horizontal excitation

    , Article JVC/Journal of Vibration and Control ; Volume 25, Issue 5 , 2019 , Pages 1058-1079 ; 10775463 (ISSN) Khajeh Ahmad Attari, N ; Rahimzadeh Rofooei, F ; Waezi, Z ; Sharif University of Technology
    SAGE Publications Inc  2019
    Abstract
    The lateral response of a single degree of freedom structural system containing a rigid circular cylindrical liquid tank under harmonic and earthquake excitations at a 1:2 autoparametric resonance case is considered. The governing nonlinear differential equations of motion for the combined system are solved by means of a multiple scales method considering the first three liquid sloshing modes (1,1), (0,1), and (2,1), under horizontal excitation. The fixed points of the gyroscopic type of governing differential equations are determined and their stability is investigated employing the perturbation method. The obtained results reveal an increase in the stability region for a single-mode...