Loading...
Search for: grain-boundaries
0.008 seconds
Total 126 records

    Microstructure and mechanical properties of oxide-dispersion strengthened Al6063 alloy with ultra-fine grain structure

    , Article Metallurgical & Materials Transactions. Part A ; Mar2011, Vol. 42 Issue 3, p. 816-824 Asgharzadeh, H ; Simchi, A. (Abdolreza) ; Kim, H. S ; Sharif University of Technology
    Abstract
    The microstructure and mechanical properties of the ultra-fine grained (UFG) Al6063 alloy reinforced with nanometric aluminum oxide nanoparticles (25 nm) were investigated and compared with the coarse-grained (CG) Al6063 alloy (~2 μm). The UFG materials were prepared by mechanical alloying (MA) under high-purity Ar and Ar-5 vol pct O2 atmospheres followed by hot powder extrusion (HPE). The CG alloy was produced by HPE of the gas-atomized Al6063 powder without applying MA. Electron backscatter diffraction under scanning electron microscopy together with transmission electron microscopy studies revealed that the microstructure of the milled powders after HPE consisted of ultra-fine grains... 

    Microstructure, mechanical properties, corrosion behavior and cytotoxicity of Mg-Zn-Al-Ca alloys as biodegradable materials

    , Article Journal of Alloys and Compounds ; Vol. 607 , 2014 , Pages 1-10 ; ISSN: 09258388 Homayun, B ; Afshar, A ; Sharif University of Technology
    Abstract
    Recently, considerable attentions have been paid to alloy Mg-4Zn-0.2Ca for biomedical applications due to its suitable biocompatibility and acceptable mechanical properties. In this work, the effects of the addition of different amounts of Al on microstructure, mechanical properties, degradation behavior, and biocompatibility of this alloy were investigated. The corrosion behaviors of the alloys were investigated through polarization tests, chronoamperometry analysis, immersion tests, and EIS experiments. The mechanical properties were analyzed by using tensile tests and compression tests. The results showed that the addition of Al up to 3 wt.% considerably modifies the degradation behaviors... 

    Study on microstructure and mechanical characteristics of low-carbon steel and ferritic stainless steel joints

    , Article Materials Science and Engineering A ; Vol. 608, issue , 2014 , pp. 35-45 ; ISSN: 09215093 Sarkari Khorrami, M ; Mostafaei, M. A ; Pouraliakbar, H ; Kokabi, A. H ; Sharif University of Technology
    Abstract
    In this work, examinations on the microstructure and mechanical properties of plain carbon steel and AISI 430 ferritic stainless steel dissimilar welds are carried out. Welding is conducted in both autogenous and using ER309L austenitic filler rod conditions through gas tungsten arc welding process. The results indicate that fully-ferritic and duplex ferritic-martensitic microstructures are formed for autogenous and filler-added welds, respectively. Carbide precipitation and formation of martensite at ferrite grain boundaries (intergranular martensite) as well as grain growth occur in the heat affected zone (HAZ) of AISI 430 steel. It is found that weld heat input can strongly affect grain... 

    An electron back-scattered diffraction study on the microstructure evolution of severely deformed aluminum AI6061 alloy

    , Article IOP Conference Series: Materials Science and Engineering ; Vol. 63, Issue. 1 , 30 June- 4 July , 2014 ; ISSN: 17578981 Vaseghi, M ; Taheri, A. K ; Kim, H. S ; Sharif University of Technology
    Abstract
    In this paper dynamic strain ageing behavior in an Al-Mg-Si alloy related to equal channel angular pressing (ECAP) was investigated. In order to examine the combined plastic deformation and ageing effects on microstructure evolutions and strengthening characteristics, the Al6061 alloy were subjected to φ=90° ECAP die for up to 4 passes via route Bc at high temperatures. For investigating the effects of ageing temperature and strain rate in ECAP, Vickers hardness tests were performed. The combination of the ECAP process with dynamic ageing at higher temperatures resulted in a significant increase in hardness. The microstructural evolution of the samples was studied using electron... 

    Analysis of strain rate sensitivity of ultrafine-grained AA1050 by stress relaxation test

    , Article Metallurgical and Materials Transactions A: Physical Metallurgy and Materials Science ; Volume 45, Issue 12 , November 2014 , Pages 5442-5450 Mohebbi, M. S ; Akbarzadeh, A ; Kim, B. H ; Kim, S. K ; Sharif University of Technology
    Abstract
    Commercially pure aluminum sheets, AA 1050, are processed by accumulative roll bonding (ARB) up to eight cycles to achieve ultrafine-grained (UFG) aluminum as primary material for mechanical testing. Optical microscopy and electron backscattering diffraction analysis are used for microstructural analysis of the processed sheets. Strain rate sensitivity (m-value) of the specimens is measured over a wide range of strain rates by stress relaxation test under plane strain compression. It is shown that the flow stress activation volume is reduced by decrease of the grain size. This reduction which follows a linear relation for UFG specimens, is thought to enhance the required effective (or... 

    Microstructural development and mechanical properties of nanostructured copper reinforced with SiC nanoparticles

    , Article Materials Science and Engineering A ; Volume 568 , 2013 , Pages 33-39 ; 09215093 (ISSN) Akbarpour, M. R ; Salahi, E ; Hesari, F. A ; Yoon, E. Y ; Kim, H. S ; Simchi, A ; Sharif University of Technology
    2013
    Abstract
    Nanostructured Cu and Cu-2. vol% SiC nanocomposite were produced by high energy mechanical milling and hot pressing technique. Microstructure development during fabrication process was investigated by X-ray diffraction, scanning electron microscope, scanning transmission electron microscope, and electron backscatter diffraction techniques. The results showed that the microstructure of copper and copper-based nanoco mposite composed of a mixture of equiaxed nanograins with bimodal and non-random misorientation distribution. The presence of SiC nanoparticles refined the grain structure of the copper matrix while the fraction of low angle grain boundaries was increased. Evaluation of mechanical... 

    Effect of η phase on mechanical properties of the iron-based superalloy using shear punch testing

    , Article ISIJ International ; Volume 53, Issue 2 , 2013 , Pages 311-316 ; 09151559 (ISSN) Seifollahi, M ; Kheirandish, S ; Razavi, S. H ; Abbasi, S. M ; Sahrapour, P ; Sharif University of Technology
    2013
    Abstract
    In this paper, the shear deformation behavior of A286 Iron-based superalloy was studied with an emphasis on the influence of η phase on shear strength. The η (Ni3Ti phase precipitates at high temperature heat treatment or during services at the expense of gamma prime phase. According to the microstructural features, no evidences of η phase were found at 650 and 720°C. η phase precipitated at 780 and 840°C and the amount of it increased with an increase the time and temperature. Because of using the alloy as fasteners, investigation of shear properties and the influence of η phase on it are indispensable. The shear strength of the alloy with different volume fractions of η was examined. It... 

    Effect of molybdenum on grain boundary segregation in Incoloy 901 superalloy

    , Article Materials and Design ; Volume 46 , 2013 , Pages 573-578 ; 02641275 (ISSN) Tavakkoli, M. M ; Abbasi, S. M ; Sharif University of Technology
    2013
    Abstract
    In this paper, the effect of molybdenum on the grain boundary segregation of other elements was studied in Incoloy 901 superalloy. Initially, five alloys were prepared with different percentages of Mo by using a vacuum induction furnace. Then, these alloys were remelted by Electro-slag remelting (ESR) process and after homogenizing at 1160 °C for 2. h followed by air cooling, were rolled. The effect of Mo on segregation of elements was evaluated with Scanning Electron Microscopy, Linear Analysis, and the mechanical tests. The results showed that the grain boundary segregations of elements in Incoloy 901 superalloy were decreased by increasing of molybdenum content up to 6.7% and the... 

    Accurate numerical model for surface scattering, grain boundary scattering, and anomalous skin effect of copper wires

    , Article Proceedings - Winter Simulation Conference ; January , 2013 , Pages 209-210 ; 08917736 (ISSN) ; 9781467348416 (ISBN) Abbaspour, E ; Sarvari, R ; Akbarzadeh, A ; Rostami, M ; Sharif University of Technology
    2013
    Abstract
    In this paper we have studied both DC size effect and anomalous skin effect caused by surface and grain boundary scattering on the resistivity of Cu thin films by a Monte Carlo method. Contribution of each scattering mechanism and the interaction between them are analyzed separately. A simple and fast numerical recursive method is also introduced to guess the structure of electric field and distribution of current inside the thin film to evaluate the surface resistance instead of complicated analytical formulas  

    Severe plastic deformation of 6061 aluminum alloy tube with pre and post heat treatments

    , Article Materials Science and Engineering A ; Volume 563 , 2013 , Pages 60-67 ; 09215093 (ISSN) Farshidi, M. H ; Kazeminezhad, M ; Miyamoto, H ; Sharif University of Technology
    2013
    Abstract
    In this work, the 6061 aluminum alloy tubes are severely deformed through a novel method called Tube Channel Pressing (TCP). The ability of this process in improving mechanical properties, grain refinement and microstructural changes of the alloy with different heat treatments before and after TCP process is investigated. Results show that TCP has notable effect on grain refinement and decreases crystallite size of solid solution treated aluminum 6061 material to 52. nm after equivalent strain of 3.09 which is comparable with the measured data from other SPD processes. The strength of the specimens aged before TCP is higher than that of those aged after TCP. The specimens artificially aged... 

    Fatigue properties of heat-treated 30MSV6 vanadium microalloyed steel

    , Article Journal of Materials Engineering and Performance ; Volume 22, Issue 3 , March , 2013 , Pages 830-839 ; 10599495 (ISSN) Hajisafari, M ; Nategh, S ; Yoozbashizadeh, H ; Ekrami, A ; Sharif University of Technology
    2013
    Abstract
    In the present study, 30MSV6 microalloyed steel was heat treated under different conditions, and the relation between its microstructure and mechanical properties was investigated. Scanning electron microscopy and transmission electron microscopy were used to characterize the microstructure of the heat-treated steel, and the effect of microstructure on tensile strength and fatigue behavior was determined. Microstructural analysis indicated that precipitates were formed at different sites such as grain boundaries and sub-grain boundaries. Furthermore, microstructural studies accompanied by the evaluation of mechanical properties revealed that the optimal heat treatment cycle of 30MSV6... 

    Nanoparticle enhanced solders for increased solder reliability

    , Article Materials Research Society Symposium Proceedings, 28 November 2011 through 2 December 2011, Boston, MA ; Volume 1424 , 2012 , Pages 115-120 ; 02729172 (ISSN) ; 9781605114019 (ISBN) Mokhtari, O ; Roshanghias, A ; Ashayer, R ; Kotadia, H. R ; Khomamizadeh, F ; Kokabi, A.H ; Clode, M. P ; Miodownik, M ; Mannan, S. H ; Sharif University of Technology
    2012
    Abstract
    Due to environmental concerns traditional eutectic tin-lead solder is gradually being replaced in electronic assemblies by "lead-free" solders. During this transition, nanoparticle technology is also being investigated to see whether improvements in joint reliability for high temperature applications can be made. Nanoparticles can be used to harden the solder via Zener pinning of the grain boundaries and reduce fatigue failure. This paper explores the effects of adding Silica nanoparticles to SnAgCu solder, and how the mechanical properties induced in the solder vary with temperature. It is found that above 100°C the mechanical response and microstructure of the normal and nanoparticle... 

    Disabling of nanoparticle effects at increased temperature in nanocomposite solders

    , Article Journal of Electronic Materials ; Volume 41, Issue 7 , 2012 , Pages 1907-1914 ; 03615235 (ISSN) Mokhtari, O ; Roshanghias, A ; Ashayer, R ; Kotadia, H. R ; Khomamizadeh, F ; Kokabi, A. H ; Clode, M. P ; Miodownik, M ; Mannan, S. H ; Sharif University of Technology
    2012
    Abstract
    The use of nanoparticles to control grain size and mechanical properties of solder alloys at high homologous temperature is explored. It is found that silica nanoparticles in the 100 nm range coated with 2 nm to 3 nm of gold can be dispersed within solders during the normal reflow soldering process, and that these particles are effective in hardening the solder and restricting dynamic grain growth during compression testing at low homologous temperature. As the homologous temperature increases towards 0.75, the effects of the nanoparticles on both mechanical properties and dynamical grain growth reduce, and by homologous temperatures of 0.86 the effects have completely disappeared. This... 

    Effect of hot rolling on microstructure and transformation cycling behaviour of equiatomic NiTi shape memory alloy

    , Article Materials Science and Technology (United Kingdom) ; Volume 28, Issue 6 , 2012 , Pages 727-732 ; 02670836 (ISSN) Ahadi, A ; Rezaei, E ; Karimi Taheri, A ; Sharif University of Technology
    2012
    Abstract
    In this study, a near equiatomic NiTi shape memory alloy was hot rolled at 800°C using thethickness reductions of 30 and 50%. Optical and transmission electron microscopy, together withX-ray diffraction were used to demonstrate the microstructural changes associated with the hotrolling at different thickness reductions. Repeated transformation cycling was employed toinvestigate the evolution of R phase during cycling. Microstructural observations revealed thepresence of deformation twins embedded in an elongated grain matrix in the hot rolled material.Moreover, it was found that with increasing degree of thickness reduction, the size and number ofdeformation twins increased throughout the... 

    The effect of TLP bonding temperature on microstructural and mechanical property of joints made using FSX-414 superalloy

    , Article Materials Science and Engineering A ; Volume 546 , June , 2012 , Pages 291-300 ; 09215093 (ISSN) Bakhtiari, R ; Ekrami, A ; Khan, T. I ; Sharif University of Technology
    2012
    Abstract
    The bonding temperature is an important parameter for optimization of the Transient Liquid Phase (TLP) bonding process in order to achieve a sound joint with good mechanical properties. However, the bonding temperature used can also be restricted by the microstructural stability of the base metal. In this study, the effect of bonding temperature (1050-1200 °C) on the joint microstructure and mechanical properties was studied for TLP bonding of FSX-414 superalloy using MBF-80 interlayer with thickness of 50 μm. Increasing bonding temperature from 1050 to 1150 °C caused reduction in the time required for complete isothermal solidification in agreement with models based on the diffusion induced... 

    Dynamic restoration and microstructural evolution during hot deformation of a P/M Al6063 alloy

    , Article Materials Science and Engineering A ; Volume 542 , April , 2012 , Pages 56-63 ; 09215093 (ISSN) Asgharzadeh, H ; Simchi, A ; Kim, H. S ; Sharif University of Technology
    2012
    Abstract
    Hot deformation behavior of Al6063 alloy produced by direct powder extrusion was studied by means of uniaxial compression test in the temperature range between 300 and 450°C and strain rate range between 0.01 and 1s -1. Electron backscatter diffraction (EBSD) technique and transmission electron microscopy (TEM) were utilized to study the microstructure of the material before and after the hot deformation. The microstructure of the extruded alloy consisted of elongated grains within a subgrain structure and small grains free of low angle grain boundaries (LAGBs). An equiaxed duplex microstructure consisting of large substructured grains and fine grains separated by high angle grain boundaries... 

    Microstructural evolution in damaged IN738LC alloy during various steps of rejuvenation heat treatments

    , Article Journal of Alloys and Compounds ; Volume 512, Issue 1 , January , 2012 , Pages 340-350 ; 09258388 (ISSN) Hosseini, S. S ; Nategh, S ; Ekrami, A. A ; Sharif University of Technology
    2012
    Abstract
    IN738LC is one of the superior nickel base superalloys utilized at high temperatures in aggressive environments. However, experiencing high temperatures and stresses during service causes microstructure deterioration and degradation of mechanical properties in this alloy. To restore the microstructure and mechanical properties of the degraded alloy, rejuvenation heat treatments can be considered. In this study, the evolution of microstructural features in a creep damaged IN738LC superalloy during different stages of rejuvenation heat treatment cycles was investigated. During solution treatment stage, dissolution of coarsened γ′ precipitates, grain boundary films and transition zone around... 

    Hydrogen sensor based on MWNTs/WO 3

    , Article Proceedings of IEEE Sensors ; 2011 , Pages 5-7 ; 9781424492886 (ISBN) Azam, I. Z ; Roghayeh, G ; IEEE SENSORS Council ; Sharif University of Technology
    Abstract
    In this article we report hydrogen sensing property of WO 3/MWNTs thin films that were fabricated by spin-coating on alumina substrates. The MWNTs were initially functionalized (f-MWNTs) to enhance dispersion in the sol of multiwalled carbon nanotubes (MWNTs) and tungsten trioxide (WO 3). Microstructure, morphology and chemical composition of the materials were characterized by SEM, TEM, XRD and XPS methods. Our results show WO 3 nanoparticles were nucleated on oxygenated group on surface of f-MWNTs in hybrid suspension. After annealing the films at 350 °C, electrical conductance measurements at different operating temperature were performed and the results indicates rather fast and linear... 

    Producing Ti-6Al-4V/TiC composite with good ductility by vacuum induction melting furnace and hot rolling process

    , Article Materials and Design ; Volume 32, Issue 10 , December , 2011 , Pages 5010-5014 ; 02641275 (ISSN) Rastegari, H. A ; Asgari, S ; Abbasi, S. M ; Sharif University of Technology
    2011
    Abstract
    In this paper, Ti-6Al-4V/TiC composite was fabricated by VIM furnace and graphite crucible. X-ray diffraction analysis and EDS techniques were used to identify the phases in the material. Microstructure characteristics of the Ti-6Al-4V/TiC composite were evaluated by means of optical microscopy. The tensile test was performed at room temperature after hot-rolling of the samples in the beta phase field. The results revealed that at different melting times, three kinds of precipitates are formed in the microstructure including grain boundary, eutectic and transgranular precipitates. The size of transgranular precipitates was significantly larger than that of the other two types of carbides and... 

    Hot deformation of ultrafine-grained Al6063/Al2O3 nanocomposites

    , Article Journal of Materials Science ; Volume 46, Issue 14 , July , 2011 , Pages 4994-5001 ; 00222461 (ISSN) Asgharzadeh, H ; Simchi, A ; Kim, H. S ; Sharif University of Technology
    2011
    Abstract
    Ultrafine-grained (UFG) Al6063 alloy reinforced with 0.8 vol% nanometric alumina particles (25 nm) was prepared by reactive mechanical alloying and direct powder extrusion. Transmission electron microscopy and electron backscatter diffraction analysis showed that the grain structure of the nanocomposite composed of nanosize grains (<0.1 μm), ultrafine grains (0.1-1 μm) and micronsize grains (>1 μm) with random orientations. Mechanical properties of the material were examined at room and high temperatures by compression test. It was found that the yield strength of the UFG composite material is mainly controlled by the Orowan mechanism rather than the grain boundaries. The deformation...