Loading...
Search for: graphite
0.009 seconds
Total 210 records

    Polyphenols attached graphene nanosheets for high efficiency NIR mediated photodestruction of cancer cells

    , Article Materials Science and Engineering C ; Volume 33, Issue 3 , 2013 , Pages 1498-1505 ; 09284931 (ISSN) Abdolahad, M ; Janmaleki, M ; Mohajerzadeh, S ; Akhavan, O ; Abbasi, S ; Sharif University of Technology
    2013
    Abstract
    Green tea-reduced graphene oxide (GT-rGO) sheets have been exploited for high efficiency near infrared (NIR) photothermal therapy of HT29 and SW48 colon cancer cells. The biocompatibility of GT-rGO sheets was investigated by means of MTT assays. The polyphenol constituents of GT-rGO act as effective targeting ligands for the attachment of rGO to the surface of cancer cells, as confirmed by the cell granularity test in flow cytometry assays and also by scanning electron microscopy. The photo-thermal destruction of higher metastatic cancer cells (SW48) is found to be more than 20% higher than that of the lower metastatic one (HT29). The photo-destruction efficiency factor of the GT-rGO is... 

    Neutronic simulation of a pebble bed reactor considering its double heterogeneous nature

    , Article Nuclear Engineering and Design ; Volume 253 , 2012 , Pages 277-284 ; 00295493 (ISSN) Abedi, A ; Vosoughi, N ; Sharif University of Technology
    2012
    Abstract
    In pebble bed reactors, the core is filled with thousands of graphite and fuel pebbles. Fuel pebbles in these reactors consist of TRISO particles, which are embedded in a graphite matrix stochastically. The reactor core is also stochastically filled with pebbles. These two stochastic geometries comprise the so-called double heterogeneous nature of this type of reactor. In this paper, a pebble bed reactor, the HTR-10, is used to demonstrate a treatment of this double heterogeneity using the MCNP5 Monte Carlo code and MATLAB programming. In this technique, TRISO particles are modeled in a pebble using the expanded FILL and LATTICE features of MCNP5. MATLAB is used to generate random numbers... 

    Irreversibility in response to forces acting on graphene sheets

    , Article Physical Review Letters ; Volume 104, Issue 19 , May , 2010 ; 00319007 (ISSN) Abedpour, N ; Asgari, R ; Tabar, M. R. R ; Sharif University of Technology
    2010
    Abstract
    The amount of rippling in graphene sheets is related to the interactions with the substrate or with the suspending structure. Here, we report on an irreversibility in the response to forces that act on suspended graphene sheets. This may explain why one always observes a ripple structure on suspended graphene. We show that a compression-relaxation mechanism produces static ripples on graphene sheets and determine a peculiar temperature Tc, such that for T

    Bioelectricity Generation in a Soil Microbial Fuel Cell with Biocathode Denitrification

    , Article ; Volume 37, Issue 19 , 2015 , Pages 2092-2098 ; 15567036 (ISSN) Afsham, N ; Roshandel, R ; Yaghmaei, S ; Vajihinejad, V ; Sherafatmand, M ; Sharif University of Technology
    Taylor and Francis Inc  2015
    Abstract
    A soil microbial fuel cell was investigated that uses soil and groundwater to generate electricity. The cathode surface area and materials are always important for increasing power. Power density was shown to be a linear function of cathode surface area. Biofilm formation on the graphite cathode was observed to be helpful in enhancing power output and maximum performance reached 89.2 mW/m2. As an application for the insertion-type soil microbial fuel cell, nitrate removing was investigated in cathode. Nitrate was reduced in an aerobic cathode at the rate of 37.5 mg nitrate/lit/day and 55 mg nitrate/lit/day in anaerobic cathode  

    Electrodeposition of graphite-bronze composite coatings and study of electroplating characteristics

    , Article Surface and Coatings Technology ; Volume 187, Issue 2-3 , 2004 , Pages 293-299 ; 02578972 (ISSN) Afshar, A ; Ghorbani, M ; Mazaheri, M ; Sharif University of Technology
    2004
    Abstract
    The aim of this research is to obtain composite coatings of bronze (90% Cu-10% Sn) with graphite particles. The electrodeposition of G-Cu (Sn) composites from an alkaline bath containing cyanide is described. Composite coatings consisting of graphite particles and copper-tin were prepared by means of the conventional electrocodeposition (CECD) and sediment codeposition (SCD) techniques. The graphite particles involved were less than 10 μm. The dependence of graphite amount in the composite coatings was investigated in relation to the graphite concentration in bath, cathode current density, stir rate and technique type and it was shown that these parameters strongly affected the volume... 

    Design of a pseudo stir bar sorptive extraction using graphenized pencil lead as the base of the molecularly imprinted polymer for extraction of nabumetone

    , Article Spectrochimica Acta - Part A: Molecular and Biomolecular Spectroscopy ; Volume 238 , 2020 Afsharipour, R ; Dadfarnia, S ; Haji Shabani, A. M ; Kazemi, E ; Sharif University of Technology
    Elsevier B.V  2020
    Abstract
    Molecularly imprinted polymer (MIP) was synthesized through the coprecipitation method on the graphene oxide anchored pencil lead as a substrate for the first time and applied as an efficient sorbent for pseudo stir bar sorptive extraction of nabumetone. The extracted analyte was determined by a novel spectrophotometric method based on the aggregation of silicate sol-gel stabilized silver nanoparticles in the presence of the analyte. The synthesized polymer was characterized using Fourier transform infrared spectroscopy and field emission scanning electron microscopy. Optimization of important parameters affecting the extraction efficiency was done using central composite design whereas the... 

    Selective fluorometric determination of sulfadiazine based on the growth of silver nanoparticles on graphene quantum dots

    , Article Microchimica Acta ; Volume 187, Issue 1 , 2020 Afsharipour, R ; Haji Shabani, A. M ; Dadfarnia, S ; Kazemi, E ; Sharif University of Technology
    Springer  2020
    Abstract
    A sensitive fluorometric assay is described for the direct determination of the antibiotic sulfadiazine. Silver nanoparticles placed on graphene quantum dots (Ag NP-GQDs) were synthesized by reduction of AgNO3 with sodium borohydride in the presence of GQDs. The growth of Ag NPs on the surface of the GQDs causes quenching of the blue fluorescence of the GQDs with an emission maximum at 470 nm by surface-enhanced energy transfer. If sulfadiazine is added, it interacts with Ag NPs and fluorescence is restored. Under optimal conditions, the fluorescence increases linearly in the sulfadiazine concentration range of 0.04–22.0 μM. The detection limit is 10 nM with relative standard deviations of... 

    Fabrication of a sensitive colorimetric nanosensor for determination of cysteine in human serum and urine samples based on magnetic-sulfur, nitrogen graphene quantum dots as a selective platform and Au nanoparticles

    , Article Talanta ; Volume 226 , 2021 ; 00399140 (ISSN) Afsharipour, R ; Dadfarnia, S ; Haji Shabani, A. M ; Kazemi, E ; Pedrini, A ; Verucchi, R ; Sharif University of Technology
    Elsevier B.V  2021
    Abstract
    A novel colorimetric nanosensor is reported for the selective and sensitive determination of cysteine using magnetic-sulfur, nitrogen graphene quantum dots (Fe3O4/S, N-GQDs), and gold nanoparticles (Au NPs). Thus, S, N-GQDs was firstly immobilized on Fe3O4 nanoparticles through its magnetization in the presence of Fe3+ in the alkali solution. The prepared Fe3O4/S, N-GQDs were dispersed in cysteine solution resulting in its quick adsorption on the surface of the Fe3O4/S, N-GQDs through hydrogen bonding interaction. Then, Au NPs solution was added to this mixture that after a short time, the color of Au NPs changed from red to blue, the intensity of surface plasmon resonance peak of Au NPs at... 

    Fabrication of a sensitive colorimetric nanosensor for determination of cysteine in human serum and urine samples based on magnetic-sulfur, nitrogen graphene quantum dots as a selective platform and Au nanoparticles

    , Article Talanta ; Volume 226 , 2021 ; 00399140 (ISSN) Afsharipour, R ; Dadfarnia, S ; Haji Shabani, A. M ; Kazemi, E ; Pedrini, A ; Verucchi, R ; Sharif University of Technology
    Elsevier B.V  2021
    Abstract
    A novel colorimetric nanosensor is reported for the selective and sensitive determination of cysteine using magnetic-sulfur, nitrogen graphene quantum dots (Fe3O4/S, N-GQDs), and gold nanoparticles (Au NPs). Thus, S, N-GQDs was firstly immobilized on Fe3O4 nanoparticles through its magnetization in the presence of Fe3+ in the alkali solution. The prepared Fe3O4/S, N-GQDs were dispersed in cysteine solution resulting in its quick adsorption on the surface of the Fe3O4/S, N-GQDs through hydrogen bonding interaction. Then, Au NPs solution was added to this mixture that after a short time, the color of Au NPs changed from red to blue, the intensity of surface plasmon resonance peak of Au NPs at... 

    Comparison between electrochemical and photoelectrochemical detection of dopamine based on titania-ceria-graphene quantum dots nanocomposite

    , Article Biosensors and Bioelectronics ; Volume 151 , 2020 Ahmadi, N ; Bagherzadeh, M ; Nemati, A ; Sharif University of Technology
    Elsevier Ltd  2020
    Abstract
    In this study, titania-ceria-graphene quantum dot (TC-GQD) nanocomposite was synthesized by hydrothermal method for the first time. The prepared nanomaterials were characterized by XRD, FTIR dynamic light scattering (DLS), FESEM, HRTEM, and EDX spectroscopy along with elemental mapping. The synergistic effect of the nanocomposite components was studied by diffuse reflectance spectroscopy (DRS) and electrical conductivity meter. The results showed that band gap of TC-GQD nanocomposite was shifted to visible lights relative to its components (1.3 eV), and electrical conductivity of the sample was significant increased to 89.5 μS cm−1. After chemical and physical characterization, prepared new... 

    A theoretical investigation into the effects of functionalized graphene nanosheets on dimethyl sulfoxide separation

    , Article Chemosphere ; Volume 297 , 2022 ; 00456535 (ISSN) Ajalli, N ; Alizadeh, M ; Hasanzadeh, A ; Khataee, A ; Azamat, J ; Sharif University of Technology
    Elsevier Ltd  2022
    Abstract
    The potential of carbon-based nanosheet membranes with functionalized pores is great as water treatment membranes. Using the molecular dynamic simulation technique, the dimethyl sulfoxide (DMSO) separation from the water/DMSO binary solution is investigated, and the functionalized graphene nanosheets are used as a membrane. This membrane was functionalized by –F (fluorine) and –H (hydrogen) functional groups. For the separation of DMSO, external hydrostatic pressures up to 100 MPa were applied to the considered systems. The separation mechanism was based on molecular size. Multiple analyses were done to study the capability of considered membranes for the separation of DMSO molecules from... 

    Accelerated differentiation of neural stem cells into neurons on ginseng-reduced graphene oxide sheets

    , Article Carbon ; Volume 66 , January , 2014 , Pages 395-406 Akhavan, O ; Ghaderi, E ; Abouei, E ; Hatamie, S ; Ghasemi, E ; Sharif University of Technology
    Abstract
    Asian red ginseng was used for green reduction of chemically exfoliated graphene oxide (GO) into reduced graphene oxide (rGO). The reduction level and electrical conductivity of the ginseng-rGO sheets were comparable to those of hydrazine-rGO ones. Reduction by ginseng resulted in repairing the sp 2 graphitic structure of the rGO, while hydrazine-rGO showed more defects and/or smaller aromatic domains. The ginseng-rGO sheets presented a better stability against aggregation than the hydrazine-rGO ones in an aqueous suspension. Whilst the hydrophobic hydrazine-rGO films exhibited no toxicity against human neural stem cells (hNSCs), the hydrophilic GO and ginseng-rGO films (as more... 

    Graphene nanomesh promises extremely efficient in vivo photothermal therapy

    , Article Small ; Volume 9, Issue 21 , 2013 , Pages 3593-3601 ; 16136810 (ISSN) Akhavan, O ; Ghaderi, E ; Sharif University of Technology
    2013
    Abstract
    Reduced graphene oxide nanomesh (rGONM), as one of the recent structures of graphene with a surprisingly strong near-infrared (NIR) absorption, is used for achieving ultraefficient photothermal therapy. First, by using TiO2 nanoparticles, graphene oxide nanoplatelets (GONPs) are transformed into GONMs through photocatalytic degradation. Then rGONMs functionalized by polyethylene glycol (PEG), arginine-glycine-aspartic acid (RGD)-based peptide, and cyanine 7 (Cy7) are utilized for in vivo tumor targeting and fluorescence imaging of human glioblastoma U87MG tumors having ανβ3 integrin receptors, in mouse models. The rGONM-PEG suspension (1 μg mL -1) exhibits about 4.2- and 22.4-fold higher NIR... 

    Flash photo stimulation of human neural stem cells on graphene/TiO 2 heterojunction for differentiation into neurons

    , Article Nanoscale ; Volume 5, Issue 21 , 2013 , Pages 10316-10326 ; 20403364 (ISSN) Akhavan, O ; Ghaderi, E ; Sharif University of Technology
    2013
    Abstract
    For the application of human neural stem cells (hNSCs) in neural regeneration and brain repair, it is necessary to stimulate hNSC differentiation towards neurons rather than glia. Due to the unique properties of graphene in stem cell differentiation, here we introduce reduced graphene oxide (rGO)/TiO2 heterojunction film as a biocompatible flash photo stimulator for effective differentiation of hNSCs into neurons. Using the stimulation, the number of cell nuclei on rGO/TiO2 increased by a factor of ∼1.5, while on GO/TiO2 and TiO2 it increased only ∼48 and 24%, respectively. Moreover, under optimum conditions of flash photo stimulation (10 mW cm-2 flash intensity and 15.0 mM ascorbic acid in... 

    Size-dependent genotoxicity of graphene nanoplatelets in human stem cells

    , Article Biomaterials ; Volume 33, Issue 32 , 2012 , Pages 8017-8025 ; 01429612 (ISSN) Akhavan, O ; Ghaderi, E ; Akhavan, A ; Sharif University of Technology
    2012
    Abstract
    Reduced graphene oxide nanoplatelets (rGONPs) were synthesized by sonication of covalently PEGylated GO sheets followed by a chemical reduction using hydrazine and bovine serum albumin. Human mesenchymal stem cells (hMSCs), as a fundamental factor in tissue engineering, were isolated from umbilical cord blood (as a recently proposed source for extracting fresh hMSCs) to investigate, for the first time, the size-dependent cyto- and geno-toxic effects of the rGONPs on the cells. The cell viability test showed significant cell destructions by 1.0 μg/mL rGONPs with average lateral dimensions (ALDs) of 11±4 nm, while the rGO sheets with ALDs of 3.8±0.4 μm could exhibit a significant cytotoxic... 

    Toward single-DNA electrochemical biosensing by graphene nanowalls

    , Article ACS Nano ; Volume 6, Issue 4 , March , 2012 , Pages 2904-2916 ; 19360851 (ISSN) Akhavan, O ; Ghaderi, E ; Rahighi, R ; Sharif University of Technology
    2012
    Abstract
    Graphene oxide nanowalls with extremely sharp edges and preferred vertical orientation were deposited on a graphite electrode by using electrophoretic deposition in an Mg 2+-GO electrolyte. Using differential pulse voltammetry (DPV), reduced graphene nanowalls (RGNWs) were applied for the first time, in developing an ultra-high-resolution electrochemical biosensor for detection of the four bases of DNA (G, A, T, and C) by monitoring the oxidation signals of the individual nucleotide bases. The extremely enhanced electrochemical reactivity of the four free bases of DNA, single-stranded DNA, and double-stranded DNA (dsDNA) at the surface of the RGNW electrode was compared to electrochemical... 

    Near infrared laser stimulation of human neural stem cells into neurons on graphene nanomesh semiconductors

    , Article Colloids and Surfaces B: Biointerfaces ; Volume 126 , 2015 , Pages 313-321 ; 09277765 (ISSN) Akhavan, O ; Ghaderi, E ; Shirazian, S. A ; Sharif University of Technology
    Abstract
    Reduced graphene oxide nanomeshes (rGONMs), as p-type semiconductors with band-gap energy of ~1. eV, were developed and applied in near infrared (NIR) laser stimulation of human neural stem cells (hNSCs) into neurons. The biocompatibility of the rGONMs in growth of hNSCs was found similar to that of the graphene oxide (GO) sheets. Proliferation of the hNSCs on the GONMs was assigned to the excess oxygen functional groups formed on edge defects of the GONMs, resulting in superhydrophilicity of the surface. Under NIR laser stimulation, the graphene layers (especially the rGONMs) exhibited significant cell differentiations, including more elongations of the cells and higher differentiation of... 

    Bacteriorhodopsin as a superior substitute for hydrazine in chemical reduction of single-layer graphene oxide sheets

    , Article Carbon ; Volume 81, Issue 1 , 2015 , Pages 158-166 ; 00086223 (ISSN) Akhavan, O ; Sharif University of Technology
    Elsevier Ltd  2015
    Abstract
    Bacteriorhodopsin (bR) molecules were utilized as light-driven proton pumps for green as well as effective reduction of single-layer graphene oxide (GO) sheets. The bR molecules and graphene sheets were separated from each other in an aqueous environment by using a polytetrafluoroethylene membrane filter, in order to prevent their direct interactions (including attachment of the bR molecules onto the GO). Although reduction of GO using hydrazine or bR showed similar deoxygenation levels (based on X-ray photoelectron spectroscopy), the former resulted in formation of CAN bonds which can substantially decrease the electrical conductivity of the reduced sheets. The electrical characteristics of... 

    Hydrogen-rich water for green reduction of graphene oxide suspensions

    , Article International Journal of Hydrogen Energy ; Volume 40, Issue 16 , 2015 , Pages 5553-5560 ; 03603199 (ISSN) Akhavan, O ; Azimirad, R ; Gholizadeh, H. T ; Ghorbani, F ; Sharif University of Technology
    Elsevier Ltd  2015
    Abstract
    Abstract H2-rich water as a green antioxidant was applied for deoxygenation of graphene oxide (GO) suspensions. The ability of H2-rich water for deoxygenation of GO sheets was found comparable to the ability of hydrazine (as a standard and powerful reductant), using X-ray photoelectron spectroscopy. In fact, the O/C ratio of GO sheets could be reduced from 0.51 to 0.21 and 0.16 by H2-rich water and hydrazine, respectively. More importantly, while C-N bond formation is one of the side effects of GO reduction by hydrazine, no chemical C-N bond was found on the H2-water-reduced GO (rGO) sheets. This also resulted in a better restoration of the graphitic structure of the H2-water-rGO, as... 

    Toxicity of graphene and graphene oxide nanowalls against bacteria

    , Article ACS Nano ; Volume 4, Issue 10 , October , 2010 , Pages 5731-5736 ; 19360851 (ISSN) Akhavan, O ; Ghaderi, E ; Sharif University of Technology
    2010
    Abstract
    Bacterial toxicity of graphene nanosheets in the form of graphene nanowalls deposited on stainless steel substrates was investigated for both Gram-positive and Gram-negative models of bacteria. The graphene oxide nanowalls were obtained by electrophoretic deposition of Mg2+-graphene oxide nanosheets synthesized by a chemical exfoliation method. On the basis of measuring the efflux of cytoplasmic materials of the bacteria, it was found that the cell membrane damage of the bacteria caused by direct contact of the bacteria with the extremely sharp edges of the nanowalls was the effective mechanism in the bacterial inactivation. In this regard, the Gram-negative Escherichia coli bacteria with an...