Loading...
Search for: heat-transfer-coefficient
0.012 seconds
Total 87 records

    Experimental Investigation of Using Phase Change Material Effect on Heat Transfer in Pool Boiling Process

    , M.Sc. Thesis Sharif University of Technology Behzadi, Mohammad Matin (Author) ; Shafii, Mohammad Behshad (Supervisor)
    Abstract
    One of the different methods of heat transfer, is pool boiling process. In this method, the operating fluid starts to boil on a hot surface whose temperature is more than boiling point of the fluid. Based on difference between between surface temperature and fluid boiling point, amount of heat flux from hot surface to fluid and fluid behavior will be different. In recent years, many researchers have tried to improve the amount of heat transfer in the boiling process by using various methods such as nanoparticle addition or using magnetic field.Latent heat is thermal energy released or absorbed, by a body or a thermodynamic system, during a constant-temperature process, usually a first-order... 

    Thermal Analysis of Tiba Engine Cylinder Head

    , M.Sc. Thesis Sharif University of Technology Eftekharian, Hamid (Author) ; Afshin, Hossein (Supervisor) ; Hosseini, Vahid (Supervisor)
    Abstract
    These days, the heat transfer phenomena is an important issue in internal combustion engines design because of direct effects on the performance, efficiency and emission of engine. One of the main parts is cylinder head which contacts with hot gases in combustion chamber and expose high heat flux. In this thesis, cylinder head of Tiba engine modeled by three dimensional and transient thermal analysis. In this modeling in order to consideration the effect of fluid flow, different domain of cylinder head (water jacket, intake/exhaust ports) has been simulated and appended to the model. Also combustion phenomena modeled separately, and then the heat transfer coefficient in the surface of... 

    Review and Simulation Process of Deposition in Fluidize Bed(Focus on Heat Transfer)

    , M.Sc. Thesis Sharif University of Technology Kanai Aghkand, Hamid (Author) ; Roosta Azad, Reza (Supervisor) ; Yaghmaei, Soheyla (Co-Advisor)
    Abstract
    This project related to gas purification according to difference in the deposition point in the fludized bed.The main reason for choosing fluidized bed is increasing overall heat transfer coefficient compare in to other heat exchangers. Separation process, by cooling the wall causes the self- deposition gas phase shifts to solid phase. Solid formed on the wall, act as an insulating layer and greatly reduces the heat transfer. To solve this problem, the fluidized bed system is offered because fluid particles in addition to remove the insulating layer, improving convection heat transfer coefficient . Laboratory tests show the feasibility of preventing the formation of insulating layer by... 

    Experimental Investigation of Nano Particle Effect on Heat Transfer in a Micro Heat Exchanger

    , M.Sc. Thesis Sharif University of Technology Jafarpoor Chekab, Hamideh (Author) ; Shafii, Mohammad Behshad (Supervisor) ; Saidi, Mohammad Hassan (Supervisor) ; Saeedi, Mohammad Saeed (Supervisor)
    Abstract
    Modern microelectronic systems generate a large amount of heat which must be transferred out of the system without excessive temperature rise. Conventional forced air convection and microchannel cooling plates have reached their performance limits Nanofiuids are proposed as an innovative way to solve the problem. A nanofiuid is nanoscale solid particles dispersed in a traditional heat transfer liquid. Some studies show an anomalous increase in the thermal conductivity for stationary nanofiuids. However, there are only few previous studies on the convection heat transfer rate and viscosity of nanofiuids. Both convection and stationary measurements of the thermal conductivity are widely... 

    Modeling Evaluation of Pressure Effect on Mold/Metal Interface Heat Transfer Coefficient in A356 Alloy

    , M.Sc. Thesis Sharif University of Technology Ahounbar, Elham (Author) ; Varahram, Nasser (Supervisor) ; Davami, Parviz (Supervisor)
    Abstract
    Mold/metal interfacial heat transfer coefficient (IHTC) is the most important parameter that influences the solidification and the mechanical properties of a solidified product. The present work focuses on the determination and evaluation of pressure effect on interfacial heat transfer coefficient from the experimental cooling curves during unidirectional solidification of A356 alloy against water cooled Gray iron mold (chill). For this purpose, inverse heat conduction method is used. The results showed that IHTC is not constant, but varies with time, temperature and pressure during solidification. IHTC variation is related to coherency and critical solid fraction during... 

    Modelling of Pressure Effect on Metal/Mold Interface Resistance in the A356 Aluminium Alloy Casting Process

    , M.Sc. Thesis Sharif University of Technology Fardi Ilkhchy, Ali (Author) ; Davami, Parviz (Supervisor) ; Varahram, Naser (Supervisor)
    Abstract
    The computer simulation of freezing patterns in castings has done much to broaden our understanding of casting and mold system design. The structural integrity of shaped castings is closely related to the time–temperature history during solidification, and the use of casting simulation could do much to increase this knowledge in the foundry industry. However, some uncertainties must be eradicated, particularly heat transfer at the metal/mold interface. The accurate knowledge of interfacial heat transfer coefficients is necessary for accurate modeling of castings. The present work focuses on the determination of transient mold–environment and metal–mold heat transfer coefficients during... 

    Thermal-Hydraulic Simulation and Analysis of Two-Phase Thermal Shock in Pressurized Light Water Power Plants

    , Ph.D. Dissertation Sharif University of Technology Ghafari, Mohsen (Author) ; Ghofrani, Mohammad Bagher (Supervisor)
    Abstract
    As a result of fission reaction in a nuclear reactor, the produced high neutron flux would affect the material of Reactor Pressure Vessel (RPV). This neutron radiation has a detrimental impact on the mechanical properties of the RPV material such as hardening (or embrittlement) while neutrons are absorbed by the material. A major concern in embrittled RPVs is propagation of critical flaw causing through-wall cracks. Some transients leading to overcooling of RPV intensify the propagation of theses cracks and result in thermal load on RPV, known as Pressurized Thermal Shock (PTS). Such situation could be created in case of Emergency Core Cooling System (ECCS) actuation which leads to injection... 

    An Experimental-Theoretical Study on Batch (Static) Sublimation and Derivation of a Correlation for its Heat Transfer Coefficient

    , M.Sc. Thesis Sharif University of Technology Mottafegh, Amir Reza (Author) ; Otukesh, Mohammad (Supervisor)
    Abstract
    The major features of batch sublimation were investigated in an experimental-theoretical study. An experimental setup with real-time displays, sublimated dry ice blocks of different sizes, with circular or rectangular geometries. When temperature of hotplate was changed from -30 to 200 oC, heat transfer coefficient “hsub” decreased from 126 to 70 W/m2K, while thermal flux increased, linearly. Weight and area of the block had a positive/negative effects on “hsub”, respectively. In theoretical part, at first, two “linear-gradient” and “cubic” models were developed by a combined mass-momentum-energy balance. The latter used Von Karman temperature profile, and in cases of circular and... 

    Fabrication and Investigation of Condensation Performance of Hybrid and Solid – Infused Surfaces

    , M.Sc. Thesis Sharif University of Technology Rezaee, Behzad (Author) ; Mousavi, Ali (Supervisor) ; Aryanpour, Masood (Supervisor)
    Abstract
    Increasing energy consumption and limited energy resources are instances of the concerns of human societies and environmentalists today. The condensation process, as one of the most important processes in the industry, plays an important role in saving and regeneration the existing energy. Nowdays, surface optimization is one of the modern ways to improve condensation.In this research, two methods have been used to construct surfaces useful for enhancement of droplet condensation, including hybrid surfaces and solid infused surfaces. In the construction of hybrid surfaces, superhydrophobic coating with silica nanoparticles based on hydroxyl acrylic resin was used. The superhydrophilic parts... 

    Experimental and Analytical Study of Warpage Reduction in Polypropylene 3d Printing by using Recycled Silica Nanoparticles

    , M.Sc. Thesis Sharif University of Technology Ebadifard, Mohammad Reza (Author) ; Pircheraghi, Gholamreza (Supervisor) ; Tavakoli, Rohollah (Supervisor)
    Abstract
    Creating sustainable development in today's society is essential, and one of the most important elements to achieve this is the phenomenon of recycling. Lead-acid batteries are one of the sources of environmental pollution, and their separators contain 50% recyclable silica nanoparticles. In this research, impurities in these separators were removed using two methods: washing with water and sandblasting. The purity of recycled nanoparticles was 85.5% in the first method and 98% in the second method. In addition to the importance of recycling, finding a suitable use for recycled materials is also critical. FDM 3D printing is a new method of producing parts, but polypropylene is not commonly... 

    Numerical Investigation of Ambient Pressure and Electric Potential on the Heat Transfer Rate of an Electrospray

    , M.Sc. Thesis Sharif University of Technology Neyzan Hosseini, Amir Mohammad (Author) ; Ghorbanian, Kaveh (Supervisor)
    Abstract
    Electrospray is a process in which the charged liquid is subjected to the effect of an electric field and after passing through an emitter, it will propagate in the form of jets or small droplets. This process is used in applications such as electric thrusters, cooling or mass spectrometry. In the electronics industry, cooling high-temperature microprocessors is a challenge. In this regard, air-based cooling systems are not well able to discharge heat from electrical and electronic components. Electrospray cooling technology is one of the new and promising methods. In this research, the two-dimensional simulation of electrospray cooling is performed by using COMSOL commercial software as a... 

    Effects of preheating temperature and cooling rate on two-step residual stress in thermal barrier coatings considering real roughness and porosity effect

    , Article Ceramics International ; Vol. 40, Issue. 10 , December , 2014 , pp. 15925-15940 ; ISSN: 02728842 Rezvani Rad, M ; Farrahi, G. H ; Azadi, M ; Ghodrati, M ; Sharif University of Technology
    Abstract
    In this research, a finite element model was developed in order to simulate the two-step residual stress distribution of a thermal barrier coating system, considered to be used in diesel engine cylinder head, with a real roughness and real porosity. Two steps including the bond coat and the top coat deposition processes were taken into account. The real geometry of coating layers, including the roughness and the porosity, was also considered based on a scanning electron microscopy image. Then, effects of the convective heat transfer coefficient and initial substrate and substrate/bond coat preheating temperatures on the residual stress were studied. Obtained results illustrate that the... 

    CFD-aided simulation of frost growth inside a narrow duct with uniform wall temperature variation

    , Article ASME 2014 12th International Conference on Nanochannels, Microchannels, and Minichannels, ICNMM 2014, Collocated with the ASME 2014 4th Joint US-European Fluids Engineering Division Summer Meeting ; 2014 ; ISBN: 9780791846278 Darbandi, M ; Asgari, E ; Hajikaram, M ; Schneider, G. E ; Sharif University of Technology
    Abstract
    In this paper, we study the frost formation and growth at the walls of a duct with uniform wall temperature variation. The simulation is performed for laminar flow regime considering suitable semi-empirical models incorporated with computational fluid dynamics (CFD) method. The frost growth is considered to be normal to the duct surface. Since the duct aspect ratio is high, we perform our simulations in two-dimensional zones. To simulate the frost layer properly, we solve both the energy and mass balance equations implementing some semi-empirical correlations on the frost side. At this stage, we suitably predict the required heat flux value at the solid boundary and the heat transfer... 

    Experimental investigation on laminar forced convection heat transfer of ferrofluids under an alternating magnetic field

    , Article Experimental Thermal and Fluid Science ; Volume 49 , 2013 , Pages 193-200 ; 08941777 (ISSN) Ghofrani, A ; Dibaei, M. H ; Hakim Sima, A ; Shafii, M. B ; Sharif University of Technology
    2013
    Abstract
    This research study presents an experimental investigation on forced convection heat transfer of an aqueous ferrofluid flow passing through a circular copper tube in the presence of an alternating magnetic field. The flow passes through the tube under a uniform heat flux and laminar flow conditions. The primary objective was to intensify the particle migration and disturbance of the boundary layer by utilizing the magnetic field effect on the nanoparticles for more heat transfer enhancement. Complicated convection regimes caused by interactions between magnetic nanoparticles under various conditions were studied. The process of heat transfer was examined with different volume concentrations... 

    Optimization of the angle of attack of delta-winglet vortex generators over a bank of elliptical-tubes heat exchanger

    , Article ASME International Mechanical Engineering Congress and Exposition, Proceedings (IMECE) ; Volume 8 A , 2013 ; 9780791856345 (ISBN) Godazandeh, K ; Godazandeh, B ; Ansari, M. H ; Ashjaee, M ; ASME ; Sharif University of Technology
    American Society of Mechanical Engineers (ASME)  2013
    Abstract
    In order to reach a more efficient and compact heat exchanger, it is essential to optimize the design, having in mind the impact of different geometrical parameters. Many of the previously cited studies in the area of heat transfer enhancement using vortex generators were confined only to defined points in the possible design space. Thus, a multiobjective optimization study is particularly suitable in order to cover this space entirely. A CFD simulation along with Pareto method were used to simulate the air flow and heat transfer and optimize the design parameters. The angle of attack of a pair of delta-winglets mounted behind each tube is varied between β = -90° and ß = +90°. Three... 

    Experimental study on convective heat transfer coefficient around a vertical hexagonal rod bundle

    , Article Heat and Mass Transfer/Waerme- und Stoffuebertragung ; Volume 48, Issue 6 , 2012 , Pages 1023-1029 ; 09477411 (ISSN) Makhmalbaf, M. H. M ; Sharif University of Technology
    2012
    Abstract
    Research on convective heat transfer coefficient around a rod bundle has many diverse applications in industry. So far, many studies have been conducted in correlations related to internal and turbulent fully-developed flow. Comparison shows that Dittus-Boelter, Sieder-Tate and Petukhov have so far been the most practical correlations in fully-developed turbulent fluid flow heat transfer. The present study conducts an experimental examination of the validity of these frequently-applied correlations and introduces a manufactured test facility as well. Due to its generalizibility, the unique geometry of this test facility (hexagonal arranged, 7 vertical rods in a hexagonal tube) can fulfil... 

    Effect of pressure on heat transfer coefficient at the metal/mold interface of A356 aluminum alloy

    , Article International Communications in Heat and Mass Transfer ; Volume 39, Issue 5 , 2012 , Pages 705-712 ; 07351933 (ISSN) Fardi Ilkhchy, A ; Jabbari, M ; Davami, P ; Sharif University of Technology
    Abstract
    The aim of this paper is to correlate interfacial heat transfer coefficient (IHTC) to applied external pressure, in which IHTC at the interface between A356 aluminum alloy and metallic mold during the solidification of casting under different pressures were obtained using the inverse heat conduction problem (IHCP) method. The method covers the expedient of comparing theoretical and experimental thermal histories. Temperature profiles obtained from thermocouples were used in a finite difference heat flow program to estimate the transient heat transfer coefficients. The new simple formula was presented for correlation between external pressure and heat transfer coefficient. Acceptable... 

    Evaluation of pressure effect on heat transfer coefficient at the metal-mold interface for casting of A356 al alloy

    , Article Iranian Journal of Materials Science and Engineering ; Volume 9, Issue 1 , 2012 , Pages 11-20 ; 17350808 (ISSN) Fardi Ilkhchy, A ; Varahraam, N ; Davami, P ; Sharif University of Technology
    Abstract
    During solidification and casting in metallic molds, the heat flow is controlled by the thermal resistance at the casting-mold interface. Thus heat transfer coefficient at the metal-mold interface has a predominant effect on the rate of heat transfer. In some processes such as low pressure and die-casting, the effect of pressure on molten metal will affect the rate of heat transfer at least at initial steps of solidification. In this study interfacial heat transfer coefficient at the interface between A356 alloy casting and metallic mold during the solidification of casting under pressure were obtained using the IHCP (Inverse Heat Conduction Problem) method. Temperature measurements are then... 

    Numerical study of enhanced heat transfer by coupling natural and electro-convections in a horizontal enclosure

    , Article Journal of Enhanced Heat Transfer ; Volume 18, Issue 6 , 2011 , Pages 503-511 ; 10655131 (ISSN) Ghazi, R ; Saidi, M. S ; Saidi, M. H ; Sharif University of Technology
    2011
    Abstract
    The heat transfer enhancement of natural convection using an electrohydrodynamic technique inside a horizontal enclosure heated from below is studied numerically. The interactions between the electric field, flow field, and temperature field are investigated by computational fluid dynamics methods. The flow and temperature fields are affected by voltage applied to the wire electrodes. For different voltages and numbers of electrodes, it is noticed that the Nusselt number increases in all cases and the best enhancement is obtained at lower Rayleigh numbers. It is also shown that increasing the number of electrodes does not always cause an increase in the heat transfer enhancement. Actually,... 

    Experimental research on heat transfer of water in tubes with conical ring inserts in transient regime

    , Article International Communications in Heat and Mass Transfer ; Volume 38, Issue 5 , 2011 , Pages 668-671 ; 07351933 (ISSN) Anvari, A. R ; Lotfi, R ; Rashidi, A. M ; Sattari, S ; Sharif University of Technology
    2011
    Abstract
    Forced convective of water in horizontal tubes with conical tube inserts has been studied experimentally. The transient flow regime has been used for the tests. Experimental results are validated with existing well established correlation. The turbulators were placed in two different arrangements: converging conical ring, referred to as CR array and diverging conical ring, DR array. Two correlations for the Nusselt number based on the experiment are introduced for practical use. It is found that the insertion of turbulators has enhanced the Nusselt number for the DR arrangement up to 521%, and for the CR arrangement up to 355%, although using the turbulators cause a significant increase in...