Loading...
Search for: heating
0.023 seconds
Total 1786 records

    Optimal charge scheduling of PHEV in a multi-carrier energy home

    , Article 2014 14th International Conference on Environment and Electrical Engineering, EEEIC 2014 - Conference Proceedings ; 2014 , p. 199-203 ; ISBN: 9781480000000 Rastegar, M ; Fotuhi-Firuzabad, M ; Sharif University of Technology
    Abstract
    The presence of different energy carriers as well as the advent of new multi-generation technologies such as combined heat and power (CHP) at homes necessitates designing an integrated model for optimal operation of such multi-carrier energy home. A residential energy hub model including a CHP and a Plug-in hybrid electric vehicle (PHEV) is presented in this paper to show the multi-carrier energy system operation. In addition, this paper proposes an optimization-based formulation for PHEV charging control in the residential energy hub. The payment cost is minimized for the charge scheduling of PHEV through optimization of the residential energy hub operation in response to the... 

    Voltage-frequency planning for thermal-aware, low-power design of regular 3-D NoCs

    , Article Proceedings of the IEEE International Conference on VLSI Design ; 2010 , p. 57-62 ; ISSN: 10639667 ; ISBN: 9780769539287 Arjomand, M ; Sarbazi-Azad, H ; Sharif University of Technology
    Abstract
    Network-on-Chip combined with Globally Asynchronous Locally Synchronous paradigm is a promising architecture for easy IP integration and utilization with multiple voltage levels. For power reduction, multiple voltage-frequency levels are successfully applied to 2-D NoCs, but never with a generic approach to 3-D counterparts; in which low heat conductivity of insulator layers makes high dense temperature distribution at layers away from heat sink. In this paper, a thermal-aware methodology for regular 3-D NoCs based on multiple voltage levels is proposed. Given an application task graph, this methodology determines an efficient mapping of tasks onto network tiles, considering inherent... 

    A comparison between the minimum-order & full-order observers in robust control of the air handling units in the presence of uncertainty

    , Article Energy and Buildings ; Volume 91 , 15 March , 2015 , Pages 115-130 ; ISSN: 3787788 Setayesh, H ; Moradi, H ; Alasty, A ; Sharif University of Technology
    Abstract
    Control of the air-handling units (AHU) is required to maintain satisfactory comfort conditions with low energy consumption. In the case of failure in sensor fusion systems of AHUs, full-order observers can be used as the supportive tool to provide an acceptable estimation of state variables. In this paper, a multivariable nonlinear model of the AHU is considered in the presence of uncertainties. The indoor temperature and relative humidity are controlled via manipulation of valve positions of air and cold water flow rates. In proposed hybrid control system, full and minimum-order observers are designed for the estimation of indoor temperature and relative humidity. Also, a regulator for... 

    Nonlinear dynamics, bifurcation and performance analysis of an air-handling unit: Disturbance rejection via feedback linearization

    , Article Energy and Buildings ; Vol. 56 , 2013 , pp. 150-159 ; ISSN: 03787788 Moradi, H ; Saffar-Avval, M ; Alasty, A ; Sharif University of Technology
    Abstract
    Nowadays, dynamic analysis of air-conditioner units is essential to achieve satisfactory comfort conditions in buildings with low energy consumption and operation cost. In this paper, a nonlinear multi input-multi output model (MIMO) of an air-handling unit (AHU) is considered. In the presence of realistic harmonic disturbances, nonlinear dynamics of AHU is investigated. The effect of various thermodynamics and geometrical parameters on limit cycles behaviour of the indoor temperature is investigated. It is observed that the indoor space volume plays as the bifurcation parameter of the system. Decreasing the indoor space volume leads to the occurrence of secondary Hopf (Neimark) bifurcation... 

    On the isobaric specific heat capacity of natural gas

    , Article Fluid Phase Equilibria ; Vol. 384, issue , 2014 , pp. 16-24 ; ISSN: 03783812 Jarrahian, A ; Karami, H. R ; Heidaryan, E ; Sharif University of Technology
    Abstract
    A colorimeter equipped with a gas booster in conjunction with a PVT cell was used to measure the heat capacity of natural gas with different amounts of impurities. Based on new experimental and literature data, a general investigation of the isobaric specific heat capacity was carried out using the Jarrahian-Heidaryan equation of state (J-H-EOS). A model was obtained that is valid in wide ranges of pressures (0.1-40. MPa) and temperatures (250-414. K). The arithmetic average of the model's absolute error is acceptable in engineering calculations and has superiority over other methods in its class  

    Experimental investigation of the effect of using thermosyphon heat pipes and vacuum glass on the performance of solar still

    , Article Energy ; Volume 75 , 2014 , pp. 501–507 ; ISSN: 03605442 Jahangiri Mamouri, S ; Gholami Derami, H ; Ghiasi, M ; Shafii, M. B ; Shiee, Z ; Sharif University of Technology
    Abstract
    A desalination system consumes energy for production of freshwater. Since the solar energy is a low-cost, environmentally clean, and available energy throughout the world, it could be the best source of energy for such systems. In this work, a modified desalination system is presented which uses advantages of thermosyphon heat pipes as a fast and high performance thermal conducting device, and at the same time, employs the advantages of evacuated tube collectors (ETCs) which are flexible and have high performance in adverse weather conditions. Results show considerable increase in the production rate of desalinated water and system efficiency with a maximum production rate of 1.02 kg/(m2 h)... 

    A thorough investigation of the effects of water depth on the performance of active solar stills

    , Article Desalination ; Vol. 347 , 2014 , Pages 77-85 ; ISSN: 00119164 Taghvaei, H ; Taghvaei, H ; Jafarpur, K ; Karimi Estahbanati, M. R ; Feilizadeh, M ; Feilizadeh, M ; Seddigh Ardekani, A ; Sharif University of Technology
    Abstract
    One of the most important operating parameters which affects the performance and efficiency of active solar stills is brine depth. In all of the previous experimental or theoretical studies, effects of water depth were investigated during only the first 24-hour period (or even shorter periods) of the operation of active solar stills. In other words, only the first day was taken into account. However, the production of an active solar still depends on several parameters such as brine temperature at sunrise (initial temperature), which are all affected by the depth variation after the first day of operation. However, the present research experimentally investigates the long-term effects of... 

    Microstructure evolution and microhardness of friction stir welded cast aluminum bronze

    , Article Journal of Materials Processing Technology ; Vol. 214, issue. 8 , August , 2014 , pp. 1524-1529 ; ISSN: 09240136 Rizi, M. S ; Kokabi, A. H ; Sharif University of Technology
    Abstract
    Microstructural characteristics and mechanical properties of a friction stir welded cast aluminum bronze (Cu-9Al-1Fe), produced by a sand casting method, have been investigated at tool rotation of 850-1500 rpm and traverse speed of 50-100 mm/min. Refinement of the primary coarse cast microstructure in the base metal was seen after friction stir welding. Microstructure of the stir zone was characterized in four distinct areas of non-isometric fine grains while a significant grain growth was noticed in some of the areas. Conditions of grain growth are defined with high heat input intensity and low heat transfer capability. The grain size was observed to decrease after FSW, resulting in a... 

    Analyses of mass and heat transport interactions in a direct methanol fuel cell

    , Article International Journal of Hydrogen Energy ; Vol. 39, issue. 21 , July , 2014 , p. 11224-11240 ; ISSN: 03603199 Kalantari, H ; Baghalha, M ; Sharif University of Technology
    Abstract
    In this paper, a two-dimensional, two-phase, non-isothermal model is presented to predict the electrochemical, mass transfer and heat transfer behaviors in a direct methanol fuel cell (DMFC). Governing equations including the momentum, continuity, heat transfer, proton and electron transport, species transport for water, methanol, and all the gas species (carbon dioxide, methanol vapor, water vapor, oxygen, and nitrogen) and the auxiliary equations are coupled to studying the various phenomena in DMFC. The modeling results agree well with the four different experimental data in an extensive range of operation conditions. A parametric study is also performed to examine the effects of the cell... 

    Heat transfer between micro- and nano-mechanical systems through optical channels

    , Article Journal of the Optical Society of America B: Optical Physics ; Vol. 31, issue. 7 , 2014 , pp. 1525-1532 ; ISSN: 07403224 Farman, F ; Bahrampour, A. R ; Sharif University of Technology
    Abstract
    In this paper, a new mechanism of heat transfer is introduced. It is shown that, without emission and absorption of photons, light can operate as a channel of heat transfer between nano- or micro-mechanical oscillators. We consider the dynamics of two vibrating mirrors coupled through one optical cavity mode in an optomechanical system. It is shown that light mediates heat transfer between two micro-mirrors. When the detuning frequency of the mechanical resonators is low, fluctuations flow through the light channel from the high temperature vibrating mirror toward the low temperature one. This behavior is named the resonance heat transfer effect. The rate of heat flow between the mechanical... 

    Study on microstructure and mechanical characteristics of low-carbon steel and ferritic stainless steel joints

    , Article Materials Science and Engineering A ; Vol. 608, issue , 2014 , pp. 35-45 ; ISSN: 09215093 Sarkari Khorrami, M ; Mostafaei, M. A ; Pouraliakbar, H ; Kokabi, A. H ; Sharif University of Technology
    Abstract
    In this work, examinations on the microstructure and mechanical properties of plain carbon steel and AISI 430 ferritic stainless steel dissimilar welds are carried out. Welding is conducted in both autogenous and using ER309L austenitic filler rod conditions through gas tungsten arc welding process. The results indicate that fully-ferritic and duplex ferritic-martensitic microstructures are formed for autogenous and filler-added welds, respectively. Carbide precipitation and formation of martensite at ferrite grain boundaries (intergranular martensite) as well as grain growth occur in the heat affected zone (HAZ) of AISI 430 steel. It is found that weld heat input can strongly affect grain... 

    Comparison between Lagrangian and Eulerian approaches in predicting motion of micron-sized particles in laminar flows

    , Article Atmospheric Environment ; Vol. 89, issue , 2014 , Pages 199-206 ; ISSN: 13522310 Saidi, M. S ; Rismanian, M ; Monjezi, M ; Zendehbad, M ; Fatehiboroujeni, S ; Sharif University of Technology
    Abstract
    Modeling the behavior of suspended particles in gaseous phase is important for diverse reasons; e.g. aerosol is usually the main subject of CFD simulations in clean rooms. Additionally, to determine the rate and sites of deposition of particles suspended in inhaled air, the motion of the particles should be predicted in lung airways. Meanwhile there are two basically different approaches to simulate the behavior of particles suspension, Lagrangian and Eulerian approaches. This study compares the results of these two approaches on simulating the same problem. An in-house particle tracking code was developed to simulate the motion of particles with Lagrangian approach. In order to simulate the... 

    Ferrofluidic open loop pulsating heat pipes: Efficient candidates for thermal management of electronics

    , Article Experimental Heat Transfer ; Vol. 27, issue. 3 , Dec , 2014 , p. 296-312 ; ISSN: 08916152 Mohammadi, M ; Taslimifar, M ; Saidi, M. H ; Shafii, M. B ; Afshin, H ; Hannani, S. K ; Sharif University of Technology
    Abstract
    Thermal management of electronic devices is presently a serious concern. This article investigates the thermal performance of a five-turn open-loop pulsating heat pipe in both start-up and steady thermal conditions. The effects of working fluid, namely water and ferrofluid, heat input, charging ratio, ferrofluid concentration, orientation, as well as application of magnetic field, are explored. Experimental results show that using ferrofluid enhances the thermal performance in comparison with the case of distilled water under certain conditions. In addition, applying a magnetic field on the open-loop pulsating heat pipe charged with ferrofluid improves its thermal performance. Charging... 

    Role of CdO addition on the growth and photocatalytic activity of electrospun ZnO nanofibers: UV vs. visible light

    , Article Applied Surface Science ; Vol. 298, issue , April , 2014 , pp. 147-154 ; ISSN: 01694332 Samadi, M ; Pourjavadi, A ; Moshfegh, A. Z ; Sharif University of Technology
    Abstract
    (ZnO)1-x(CdO)x nanofibers were fabricated via electrospinning of polymer precursor by subsequent annealing in air. Field emission scanning electron microscopy (FESEM) showed the smooth and beadless nanofibers and X-ray diffraction (XRD) and X-ray photoelectron spectroscopy (XPS) showed the ZnO hexagonal and the CdO cubic structure. Diffuse reflectance spectroscopy (DRS) showed the band gap energy reduction by increasing the amount of CdO in (ZnO)1-x(CdO)x nanofibers that resulted in the photocatalytic activity under the visible light for dye degradation. Under the UV light CdO acted as both electron and hole sink in the (ZnO) 1-x(CdO)x nanofibers and a possible photocatalytic activity... 

    Experimental study of internal forced convection of ferrofluid flow in porous media

    , Article Defect and Diffusion Forum ; Vol. 348 , April , 2014 , pp. 139-146 ; ISSN: 10120386 ; ISBN: 9783038350002 Sehat, A ; Sadrhosseini, H ; Shafii, M. B ; Sharif University of Technology
    Abstract
    This work presents an experimental study of the effect of a magnetic field on laminar forced convection of a ferrofluid flowing in a tube filled with permeable material. The walls of the tube are subjected to a uniform heat flux and the permeable bed consists of uniform spheres of 3-mm diameter. The ferrofluid synthesis is based on reacting iron (II) and iron (III) in an aqueous ammonia solution to form magnetite, Fe3O4. The magnetite is mixed with aqueous tetra methyl ammonium hydroxide, (CH3) 4NOH, solution. The dependency of the pressure drop on the volume fraction, and comparison of the pressure drop and the temperature distribution of the tube wall is studied. Also comparison of the... 

    Effect of thermal wave propagation on thermoelastic behavior of functionally graded materials in a slab symmetrically surface heated using analytical modeling

    , Article Composites Part B: Engineering ; Vol. 60 , 2014 , pp. 413-422 ; ISSN: 13598368 Molaei Najafabadi, M ; Ahmadian, M. T ; Taati, E ; Sharif University of Technology
    Abstract
    Design and development of FGMs as the heat treatable materials for high-temperature environments with thermal protection require understanding of exact temperature and thermal stress distribution in the transient state. This information is primary tool in the design and optimization of the devices for failure prevention. Frequently FGMs are used in many applications that presumably produce thermal energy transport via wave propagation. In this study, transient non-Fourier temperature and associated thermal stresses in a functionally graded slab symmetrically heated on both sides are determined. Hyperbolic heat conduction equation in terms of heat flux is used for obtaining temperature... 

    Exergy analysis of a flat plate solar collector in combination with heat pipe

    , Article International Journal of Environmental Research ; Vol. 8, Issue. 1 , 2014 , Pages 39-48 ; ISSN: 17356865 Kargarsharifabad, H ; Shafii, M. B ; Rahni, M. T ; Abbaspour, M ; Sharif University of Technology
    Abstract
    The use of solar collectors in combination with heat pipes is rapidly growing in recent years. Heat pipes, as heat transfer components, have undeniable advantages in comparison with other alternatives. The most important advantage is their high rate of heat transfer at minor temperature differences. Although there have been numerous studies on the heat analysis or first thermodynamic analysis of flat plate solar collectors in combination with heat pipes, the exergy analysis of these collectors is needed to be investigated. In this work, energy and exergy analysis of a flat plate solar collector with a heat pipe is conducted theoretically. Next, the exergy efficiency of pulsating heat pipe... 

    Gaseous slip flow mixed convection in vertical microducts with constant axial energy input

    , Article Journal of Heat Transfer ; Vol. 136, issue. 3 , 2014 ; ISSN: 00221481 Sadeghi, A ; Baghani, M ; Saidi, M. H ; Sharif University of Technology
    Abstract
    The present investigation is devoted to the fully developed slip flow mixed convection in vertical microducts of two different cross sections, namely, polygon, with circle as a limiting case, and rectangle. The two axially constant heat flux boundary conditions of H1 and H2 are considered in the analysis. The velocity and temperature discontinuities at the boundary are incorporated into the solutions using the first-order slip boundary conditions. The method considered is mainly analytical in which the governing equations in cylindrical coordinates along with the symmetry conditions and finiteness of the flow parameter at the origin are exactly satisfied. The first-order slip boundary... 

    The study of magnetic field implementation on cylinder quenched in boiling ferro-fluid

    , Article Applied Thermal Engineering ; Volume 64, Issue 1-2 , March , 2014 , Pages 331-338 ; ISSN: 13594311 Habibi Khoshmehr, H ; Saboonchi, A ; Shafii, M. B ; Jahani, N ; Sharif University of Technology
    Abstract
    It has been shown that nanofluids in different investigations increase or decrease heat transfer rate in boiling phenomenon. The present study examined the effects of ferro-fluid concentrations and magnetic field implementation on the fluid throughout the boiling process. Obtained are the quenching curve and boiling curve on specified surface roughness in both water and ferro-fluid with two different concentrations. A silver cylinder with Aspect ratio of 10, and surface roughness of 689 nm was heated up to 350 C and then was overwhelmed in the fluid under study. Temperatures were measured by a thermocouple which installed in the center of the cylinder. The test was carried out 5 times. The... 

    Temperature rise in electroosmotic flow of typical non-newtonian biofluids through rectangular microchannels

    , Article Journal of Heat Transfer ; Volume 136, Issue 3 , March , 2014 ; ISSN: 00221481 Yavari, H ; Sadeghi, A ; Saidi, M. H ; Chakraborty, S ; Sharif University of Technology
    Abstract
    Electroosmosis is the main mechanism for flow generation in lab-on-a-chip (LOC) devices. The temperature rise due to the Joule heating phenomenon, associated with the electroosmosis, may be detrimental for samples being considered in LOCs. Hence, a complete understanding of the heat transfer physics associated with the electroosmotic flow is of high importance in design and active control of LOCs. The objective of the present study is to estimate the temperature rise and the thermal entry length in electroosmotic flow through rectangular microchannels, having potential applications in LOC devices. Along this line, the power-law rheological model is used to account for non-Newtonian behavior...