Loading...
Search for: heterogeneous-porous-media
0.006 seconds
Total 28 records

    Pore Scale Experimental Study of Non-Aqueous Phase Liquid Dissolution, Flow and Distribution in Heterogeneous Porous Media

    , M.Sc. Thesis Sharif University of Technology Ramezanzadeh, Mehdi (Author) ; Ghazanfari, Mohammad Hossein (Supervisor) ; Fatemi, Mobeen (Co-Supervisor)
    Abstract
    In this work, a pore-scale analysis of nonaqueous phase liquid (NAPL) flow, transport, dissolution, and mobilization in heterogeneous and homogeneous porous media was presented. First, dissolution processes and distribution of NAPL phase were investigated using micromodel experiments. The tests were conducted at different injection rates in NAPL-saturated porous media using distilled water, surfactant, and nanoparticles-assisted surfactant. Changes in residual NAPL volume and interfacial area were measured using image analysis method to calculate the mass transfer coefficient, k, and the lumped mass transfer rate coefficient, K. Based on the experimental results, empirical Sherwood... 

    Multi-Scale Modeling of Chemo-Hydro-Mechanical Analysis of Heterogeneous Porous Media

    , M.Sc. Thesis Sharif University of Technology Adeli, Mohammad Hesan (Author) ; Khoei, Amir Reza (Supervisor)
    Abstract
    The swelling phenomenon in the porous media causes many problems in various engineering issues, including foundation construction and oil and gas extraction. For this reason, in the last few decades, flow modeling in reactive porous media and investigation of coupled hydro-chemo-mechanical problems have attracted a lot of attention. On the other hand, despite the simplifications, porous media have a heterogeneous structure, and the numerical modeling of these heterogeneities directly increases the computational costs. A suitable method for modeling heterogeneous problems is the computational homogenization method. In this method, the problem is solved in two scales in a correlated manner and... 

    Modeling and Numerical Simulation of Inertial Two-Phase Flow in Heterogeneous Porous Media

    , M.Sc. Thesis Sharif University of Technology Siahati, Ahmad (Author) ; Ghazanfari, Mohammad Hossein (Supervisor) ; Bozorgmehri, Ramin (Supervisor)
    Abstract
    In this study, single-phase and two-phase, incompressible flow in a non-deformable porous media was modeled and also simulated. The Reynolds numbers have been considered high enough to justify the use of the model including inertial terms. Afterwards, the mass conservative equations were discretized. Then, the numerical model has been developed for heterogeneous porous media. The heterogeneous porous media was comprised by several specified homogeneous regions, each having isotropic transport properties or permeability distribution with applying stochastic methods. The developed numerical model was used for predicting of saturation profile in water flooding process in one, two and... 

    Pore Scale Modeling and Upscaling of Non-Aqueous Phase Liquid Dissolution, Flow and Distribution in Heterogeneous Porous Media

    , M.Sc. Thesis Sharif University of Technology Khasi, Saeed (Author) ; Ghazanfari, Mohammad Hossein (Supervisor)
    Abstract
    In this work, flow transport, distribution, and dissolution of non-aqueous phase liquids (NAPLs) in heterogeneous porous media were modeled by focusing on the dissolution process in pore-level and field scale. First, by adopting advection-diffusion and mass transfer equations, dissolution process and NAPL distribution were investigated in a heterogeneous porous media using pore network modeling. The 2-D developed model was based on observations of micromodel tests. The pore scale simulator which adopted by this work was improved in some aspects in comparison to previous models in the literatures. First, in the phase displacement, by considering more realistic geometries for pore structure... 

    Modeling and Simulation of Miscible Flow through Fractured Porous Media Using Random Walk Method

    , M.Sc. Thesis Sharif University of Technology Fayazi, Amir (Author) ; Ghazanfari, Mohammad Hossein (Supervisor)
    Abstract
    Miscible displacement in fluid flowing through a porous medium plays an important role in many environmental and industrial applications; for instance, miscible displacements in enhanced oil recovery processes and pollutant spreading in groundwater. A large number of numerical approaches have been developed to solve the advection-dispersion equation that describes the behavior of miscible displacement in porous media. Most of these numerical models suffer from numerical dispersion. Random walk seems to be an effective method to overcome this problem especially in heterogeneous media. Here, a random walk model was developed and used for simulating miscible displacement in heterogeneous porous... 

    Multiscale Finite-Volume Simulation of Multi Phase Flow in Heterogeneous Porous Media

    , M.Sc. Thesis Sharif University of Technology Karimyan, Erfan (Author) ; Pishvaie, Mahmood Reza (Supervisor) ; Taghizadeh Manzari, Mehrdad (Supervisor)
    Abstract
    Multi-Scale finite volume (MSFV) method have been developed and applied for multiphase flow in porous media. The most important advantage of MSFV method is its computational efficiency. In this thesis we apply and implement this method to porous media simulation. Then, computational parameters such as coarsening ratio, effect of threshold on adaptive computation and different boundary conditions for computing basis functions are investigated. The two difficulties of sMSFV method are problems with high permeability contrast and problems with high course grid aspect ratio which are considered. In standard MSFV (sMSFV) method reduced boundary condition is used to determine the basis and... 

    Multiscale Finite Volume Method for Simulation of Compressible Multiphase Flow in Porous Media

    , M.Sc. Thesis Sharif University of Technology Hosseini, Sajad (Author) ; Jamshidi, Saeed (Supervisor) ; Masihi, Mohsen (Supervisor)
    Abstract
    Today, due to a massive increase in accuracy of reservoir characterization models, multiphase flow simulation on real permeability fields faces a serious challenge. Using multiscale methods in reservoir flow simulation of a heterogeneous environment has led to huge speed-up of the simulation. In multiscale methods, instead of replacing a heterogeneous medium by an equivalent homogeneous medium, used in upscaling, the problem is solved on the original resolution. In this thesis, multiscale finite volume method (MSFV) has been used to simulate flow and saturation behavior of a black oil model. Unlike the original multiscale finite volume methods that were unable to solve compressible fluid... 

    Spectral Element Simulations of Wave Propagation in Porous Fluid-Saturated Media

    , M.Sc. Thesis Sharif University of Technology Moezzi, Mohammad Javad (Author) ; Naghd Abadi, Reza (Supervisor) ; Asghari, Mohsen (Supervisor) ; Mazaheri, Hashem (Co-Advisor)
    Abstract
    The aim of this work is numerical analysis of wave propagation in earth by using spectral element method for single and multi phase with application in oil industry. In this method, numerical solution has high accuracy due to using high order polynomials and appropriate integration points. Also, the mass matrix is diagonal by using this method which results in considerable decrease in computational cost with respect to finite element method.
    The wave propagation in the mentioned models is studied by many researchers. The main problem in petroleum industry is large dimension of the model which results in high computational costs. Thus, using the proper numerical approach for these... 

    Investigation of Upscaling Methods for Heterogeneous Permeable Cluster-based Porous Media under Immiscible Two Phase Fluid Flow

    , Ph.D. Dissertation Sharif University of Technology Ganjeh-Ghazvini, Mostafa (Author) ; Masihi, Mohsen (Supervisor) ; Baghghalha, Morteza (Supervisor) ; Ghotbi, Siroos (Supervisor)
    Abstract
    Upscaling is an important step in hydrocarbon reservoir modeling which reduces the number of grid blocks of high detailed geological models to prepare them for flow simulation. This helps to speed up computational process, to keep the simulation (CPU) time within a reasonable range and to make future engineering analysis (history matching, comparison of production scenarios, Monte Carlo simulation and etc.) possible. The accuracy of post processing analysis heavily depends on the robustness and validation of the applied upscaling method. Although numerous methods have been proposed in the literature, overemphasizing the effect of scale on the behavior of complex governing equations has... 

    Investigation the Distribution Pattern and Life-Time Duration of Dense Non-Aqueous Phase Liquids (DNAPL) in Heterogeneous Porous Media (Fractured Media)

    , M.Sc. Thesis Sharif University of Technology Khezri, Khashayar (Author) ; Ataie Ashtiani, Behzad (Supervisor)
    Abstract
    Dense non-aqueous phase liquid accounts for a large share of groundwater pollution. In oil-rich countries, including Iran, the emission of this type of pollutant is mainly through leakage from concrete and steel tanks belonging to refineries and gas stations. The dissolution of these pollutants in groundwater and the vapor intrusion into residential homes increased the importance of developing efficient treatment methods. To choose the best method, it is necessary to gain sufficient knowledge of how these types of contaminants are distributed in the subsurface and how contaminants change and move over time. Heterogeneity, especially in the form of fracture, is one of the challenges to... 

    Random walk simulation of miscible flow through heterogeneous 2D porous media considering dispersion tensor

    , Article Chemical Engineering Science ; Volume 132 , August , 2015 , Pages 81-92 ; 00092509 (ISSN) Fayazi, A ; Ghazanfari, M. H ; Sharif University of Technology
    Elsevier Ltd  2015
    Abstract
    Most of numerical approaches describing the behavior of miscible displacement in porous media through the solution of advection-dispersion equation suffer from numerical dispersion. Random Walk (RW) method is a good candidate to overcome this problem especially in heterogeneous media. In addition, how treating dispersion coefficient as a tensor might affect the accuracy of RW simulation results is not well understood. Here, a RW model was developed and used for simulating miscible displacement experiments performed on heterogeneous micromodels including single fracture/flow barrier. Dispersion coefficient was treated as a tensor and a hybrid scheme was used for velocity interpolation. The... 

    Percolation-based effective permeability estimation in real heterogeneous porous media

    , Article 15th European Conference on the Mathematics of Oil Recovery, 29 August 2016 through 1 September 2016 ; 2016 ; 9462821933 (ISBN); 9789462821934 (ISBN) Masihi, M ; Gago, P ; King, P ; DCSE; Schlumberger; Shell ; Sharif University of Technology
    European Association of Geoscientists and Engineers 
    Abstract
    It has long been understood that flow behavior in heterogeneous porous media is largely controlled by the continuity of permeability contrasts. With this in mind, we are looking in new methods for a fast estimation of the effective permeability which concentrates on the properties of the percolating cluster. From percolation concepts we use a threshold permeability value (Kth) by which the gridblocks with the highest permeability values connect two opposite side of the system in the direction of the flow. Those methods can be applied to heterogeneous media of a range of permeabilities distribution and various underlying structures. We use power law relations and weighted power averages that... 

    Numerical analysis of two-phase flow in heterogeneous porous media during pre-flush stage of matrix acidizing: Optimization by response surface methodology

    , Article Physics of Fluids ; Volume 33, Issue 5 , 2021 ; 10706631 (ISSN) Sabooniha, E ; Rokhforouz, M. R ; Kazemi, A ; Ayatollahi, S ; Sharif University of Technology
    American Institute of Physics Inc  2021
    Abstract
    Oil trapping behavior during the pre-flush stage is critically important to evaluate the effectiveness of matrix acidizing for the oil well stimulation. In this study, the visco-capillary behavior of the two-phase flow in the pore-scale is analyzed to investigate the influence of wetting properties for a natural rock sample. A two-dimensional model, based on Cahn-Hilliard phase-field and Navier-Stokes equations, was established and solved using the finite element method. A stability phase diagram for log capillary number (Ca)-log viscosity ratio (M) was constructed and then compared with the reported experimental works. The maximum and minimum ranges of capillary number and viscosity ratio... 

    Neural network prediction model of three-phase fluids flow in heterogeneous porous media using scaling analysis

    , Article Journal of Petroleum Science and Engineering ; Volume 138 , 2016 , Pages 122-137 ; 09204105 (ISSN) Zarringhalam, A ; Alizadeh, M ; Rafiee, J ; Moshirfarahi, M. M ; Sharif University of Technology
    Elsevier 
    Abstract
    Scaling analysis of fluid displacement in porous media is a reliable, fast method to evaluate the displacement performance of different oil production processes under various conditions. This paper presents the scaling studies of multiphase fluid flow through permeable media with a special attention to the three-phase immiscible water alternating gas (WAG) flooding under conditions prevailing in many oil reservoirs. The investigations are performed on a heterogeneous reservoir to study in detail the sensitivity of the displacement process to the scaling groups using various combinations of the process controlling parameters. The procedure of Inspectional analysis (IA) was utilized to... 

    Nanofluid flooding in a randomized heterogeneous porous media and investigating the effect of capillary pressure and diffusion on oil recovery factor

    , Article Journal of Molecular Liquids ; Volume 320 , December , 2020 Hemmat Esfe, M ; Esfandeh, S ; Hosseinizadeh, E ; Sharif University of Technology
    Elsevier B.V  2020
    Abstract
    In the initial recovery stage, only 5 to 15% of hydrocarbons can be extracted from oil reservoirs, so it is necessary to supply energy from an external reservoir or to use advanced solutions to increase oil recovery. By using secondary recovery method and flooding, greater amount of oil can be extracted. In this study, a new procedure of flooding using nanofluid was simulated. The nanofluid and source rock were modeled as a single phase and heterogeneous porous media, respectively. The geometry was considered as a two-dimensional rectangular area. Two phase Darcy equations and mass transfer equations were utilized to simulate this process. Moreover, the effects of different volume fractions... 

    Multiscale modeling of coupled thermo-hydro-mechanical analysis of heterogeneous porous media

    , Article Computer Methods in Applied Mechanics and Engineering ; Volume 391 , 2022 ; 00457825 (ISSN) Saeedmonir, S ; Khoei, A. R ; Sharif University of Technology
    Elsevier B.V  2022
    Abstract
    This paper presents a numerical multiscale formulation for analysis of the transient heat and fluid flow in deformable heterogeneous porous media. Due to the heterogeneity of the media, the direct numerical simulation of the micro-structures leads to high computational costs. Hence, the multi-scale method can provide an efficient computational procedure. To this end, the first-order computational homogenization is adopted for two-scale simulation of THM problems. The governing equations of the problem contain a stress equilibrium equation, a mass continuity equation and an advection–diffusion equation in a fully coupled manner. Accordingly, the proper virtual power relations are defined as a... 

    Mathematical modeling of transport of aerosol particles in a shredded porous medium

    , Article Journal of Porous Media ; Volume 12, Issue 4 , 2009 , Pages 313-326 ; 1091028X (ISSN) Saidi, M. S ; Sharif University of Technology
    2009
    Abstract
    A new mathematical method is proposed to model the transport of polydisperse submicron aerosol particles in a heterogeneous porous media, and as an example, it is applied to study the transport of mainstream smoke aerosol particles in the cigarette tobacco column. The tobacco column is composed of randomly distributed pores and the aerosol particle transport is modeled utilizing a pore sub-model and taking into account aerosol particle coagulation and deposition. Copyright © 2009 Begell House, Inc  

    Investigating the relative permeability behavior in presence of capillary effects in composite core systems

    , Article Journal of Petroleum Science and Engineering ; Volume 160 , January , 2018 , Pages 341-350 ; 09204105 (ISSN) Mohammdi Alamooti, A ; Ghazanfari, M. H ; Masihi, M ; Sharif University of Technology
    Elsevier B.V  2018
    Abstract
    Successful designs for an injection process to improve reservoir recovery seek more accurate values of saturation dependent functions, including relative permeability curves. The ignorance on underlying heterogeneity (e.g. layering) might lead to inaccurate predicting of flow behavior in layered heterogeneous porous media. Analysis of experimental core flood results in composite core systems (the system) along with numerical simulation at the core scale can provide an insight into this problem, especially when the capillary effects are present. In this study unsteady state two phase displacements have been conducted on the system with different internal arrangements. The main contribution is... 

    Hybrid finite volume-finite element methods for hydro-mechanical analysis in highly heterogeneous porous media

    , Article Computers and Geotechnics ; Volume 132 , 2021 ; 0266352X (ISSN) Asadi, R ; Ataie Ashtiani, B ; Sharif University of Technology
    Elsevier Ltd  2021
    Abstract
    In this study, two classes of advanced finite volume schemes, including Multi-Point Flux Approximation (MPFA) and Dual Discrete Finite Volume (DDFV) method, have been employed in conjunction with the finite element (FE) geomechanics simulator to model the coupled fluid-solid system. Fully saturated porous media with poroelastic behavior, random field permeability and elastic modulus are considered as parameters. The performance of the proposed hydro-mechanical models, including MPFA O-FEM and DDFV-FEM, is examined through different test cases. First, the models are validated and compared with the closed-form solutions in the homogeneous domain. Second, the methods' stability and convergence... 

    Generation of Voronoi grid based on vorticity for coarse-scale modeling of flow in heterogeneous formations

    , Article Transport in Porous Media ; Volume 83, Issue 3 , Oct , 2010 , Pages 541-572 ; 01693913 (ISSN) Evazi, M ; Mahani, H ; Sharif University of Technology
    2010
    Abstract
    We present a novel unstructured coarse grid generation technique based on vorticity for upscaling two-phase flow in permeable media. In the technique, the fineness of the gridblocks throughout the domain is determined by vorticity distribution such that where the larger is the vorticity at a region, the finer are the gridblocks at that region. Vorticity is obtained from single-phase flow on original fine grid, and is utilized to generate a background grid which stores spacing parameter, and is used to steer generation of triangular and finally Voronoi grids. This technique is applied to two channelized and heterogeneous models and two-phase flow simulations are performed on the generated...