Loading...
Search for: hot-pressing
0.006 seconds
Total 36 records

    Hot deformation behavior of Fe-29Ni-17Co alloy

    , Article Transactions of Nonferrous Metals Society of China (English Edition) ; Volume 23, Issue 11 , 2013 , Pages 3271-3279 ; 10036326 (ISSN) Yazdani, M ; Abbasi, S. M ; Taheri, A. K ; Momeni, A ; Sharif University of Technology
    2013
    Abstract
    Hot compression tests were carried out on a Fe-29Ni-17Co alloy in the temperature range of 900 °C to 1200 °C and at strain rates of 0.001-1 s-1. Dynamic recrystallization was found responsible for flow softening during hot compression. The flow behavior was successfully analyzed by the hyperbolic sine equation and the corresponding material constants A, n and α were determined. The value of apparent activation energy was determined as 423 kJ/mol. The peak and steady state strains showed simple power-law dependence on the Zener-Hollomon parameter. The dynamic recrystallization kinetics was analyzed using Avrami equation and the corresponding exponent was determined to be about 2.7. This... 

    On the constitutive modeling and microstructural evolution of hot compressed A286 iron-base superalloy

    , Article Journal of Alloys and Compounds ; Volume 564 , 2013 , Pages 13-19 ; 09258388 (ISSN) Dehghan, H ; Abbasi, S. M ; Momeni, A ; Karimi Taheri, A ; Sharif University of Technology
    2013
    Abstract
    The hot working behavior of A286 was studied using hot compression tests over temperature range of 950-1100 °C and at strain rates of 0.001-1 s -1. The flow curves of the material over the studied temperatures and strain rates were typical of dynamic recrystallization. However, some points reflected a change in the mechanism of softening with the change of strain rate. The relation between flow stress, deformation temperature and strain rate was examined via power-law, hyperbolic sine and exponential constitutive equations and the hyperbolic sine function was found more appropriate. The peak strain increased with strain rate up to 0.01 s-1 and then unexpectedly decreased at higher strain... 

    Microstructural development and mechanical properties of nanostructured copper reinforced with SiC nanoparticles

    , Article Materials Science and Engineering A ; Volume 568 , 2013 , Pages 33-39 ; 09215093 (ISSN) Akbarpour, M. R ; Salahi, E ; Hesari, F. A ; Yoon, E. Y ; Kim, H. S ; Simchi, A ; Sharif University of Technology
    2013
    Abstract
    Nanostructured Cu and Cu-2. vol% SiC nanocomposite were produced by high energy mechanical milling and hot pressing technique. Microstructure development during fabrication process was investigated by X-ray diffraction, scanning electron microscope, scanning transmission electron microscope, and electron backscatter diffraction techniques. The results showed that the microstructure of copper and copper-based nanoco mposite composed of a mixture of equiaxed nanograins with bimodal and non-random misorientation distribution. The presence of SiC nanoparticles refined the grain structure of the copper matrix while the fraction of low angle grain boundaries was increased. Evaluation of mechanical... 

    Effect of nanoparticle content on the microstructural and mechanical properties of nano-SiC dispersed bulk ultrafine-grained Cu matrix composites

    , Article Materials and Design ; Volume 52 , 2013 , Pages 881-887 ; 02641275 (ISSN) Akbarpour, M. R ; Salahi, E ; Alikhani Hesari, F ; Kim, H. S ; Simchi, A ; Sharif University of Technology
    Elsevier Ltd  2013
    Abstract
    In this study, the microstructural and mechanical features of monolithic pure Cu and Cu matrix nanocomposites reinforced with three different fractions (2, 4, and 6. vol%) of SiC nanoparticles (n-SiC) fabricated via a combination of high energy mechanical milling and hot pressing techniques were investigated. The fabricated composites exhibited homogeneous distribution of the n-SiC with few porosities. It was found that the grain refinement, the planar features within the grains, and the lattice strains increase with increase in the n-SiC content. The yield and compressive strengths of the nanocomposites were significantly improved with increases in the n-SiC content up to 4. vol%; then they... 

    Al-Al3Ti nanocomposite produced in situ by two-step hot-press sintering

    , Article IOP Conference Series: Materials Science and Engineering ; Volume 40, Issue 1 , 2012 ; 17578981 (ISSN) Nikfar, B ; Ghiabakloo, H ; Hosseini, H. R. M ; Mohammadi, A. V ; Sharif University of Technology
    2012
    Abstract
    Aluminum reinforced with a large amount (up to about 55 vol.%) of Al 3Ti particles can be fabricated from Al-20Ti elemental nanometer-sized powder mixture via in-situ two step hot press sintering (TSS). For production of intermetallic reinforced in-situ composite, TSS can provide elevated temperature to facilitate the formation of intermetallic phase in situ and hot consolidation to form a fully dense solid. The first step sintering was employed at a higher temperature to obtain an initial high density, and the second step was held at a lower temperature by isothermal sintering for more time than the first one to increase bulk density without significant grain growth. The optimum TSS regime... 

    Disabling of nanoparticle effects at increased temperature in nanocomposite solders

    , Article Journal of Electronic Materials ; Volume 41, Issue 7 , 2012 , Pages 1907-1914 ; 03615235 (ISSN) Mokhtari, O ; Roshanghias, A ; Ashayer, R ; Kotadia, H. R ; Khomamizadeh, F ; Kokabi, A. H ; Clode, M. P ; Miodownik, M ; Mannan, S. H ; Sharif University of Technology
    2012
    Abstract
    The use of nanoparticles to control grain size and mechanical properties of solder alloys at high homologous temperature is explored. It is found that silica nanoparticles in the 100 nm range coated with 2 nm to 3 nm of gold can be dispersed within solders during the normal reflow soldering process, and that these particles are effective in hardening the solder and restricting dynamic grain growth during compression testing at low homologous temperature. As the homologous temperature increases towards 0.75, the effects of the nanoparticles on both mechanical properties and dynamical grain growth reduce, and by homologous temperatures of 0.86 the effects have completely disappeared. This... 

    High performance Dyneema® fiber laminate for impact resistance/macro structural composites

    , Article Journal of Thermoplastic Composite Materials ; Volume 25, Issue 4 , 2012 , Pages 403-414 ; 08927057 (ISSN) Karbalaie, M ; Yazdanirad, M ; Mirhabibi, A ; Sharif University of Technology
    2012
    Abstract
    UHMWPE composite materials are increasingly used in armors design due to their high strength-to-weight ratios and energy absorption capacities. In this study the effect of production parameters upon the terminal ballistic properties of UHMWPE composite were examined under different conditionings. The composite armor plate laminates were produced by hot pressing with three different pressing times from 10-30 minutes and the laminates conditioned at +115, +125, and +135°C. The molding temperature of SK66 fiber composite has the main direct effect on the ballistic absorption energy, so the relation of molding temperature with the adhesive bonding force between layers, the thickness of the... 

    Effect of sintering temperature and siliconcarbide fraction on density, mechanical properties and fracture mode of alumina-silicon carbide micro/nanocomposites

    , Article Materials and Design ; Volume 37 , May , 2012 , Pages 251-255 ; 02641275 (ISSN) Rahimnejad Yazdi, A ; Baharvandi, H ; Abdizadeh, H ; Purasad, J ; Fathi, A ; Ahmadi, H ; Sharif University of Technology
    2012
    Abstract
    In this study Al2O3-SiC micro/nanocomposites have been fabricated by mixing alumina nanopowders and silicon carbide micro/nanopowders, followed by hot pressing at 1550, 1600, 1650 and 1700°C. The density, mechanical properties and fracture mode of Al2O3-SiC composites containing different volume fractions (2.5%, 5%, 7.5%, 10% and 15%) of micro/nanoscale SiC particles were investigated and compared with those of alumina. The relative density of composites could reach values very close to theoretical density, especially after sintering at 1700°C. However, relative density declined by increasing the SiC fraction at the same sintering temperature. The flexural strength of composites was best for... 

    Hot deformation behavior of hot extruded Al-6Mg alloy

    , Article Materials Science and Engineering A ; Volume 535 , February , 2012 , Pages 216-221 ; 09215093 (ISSN) Mostafaei, M. A ; Kazeminezhad, M ; Sharif University of Technology
    Abstract
    The behavior of hot extruded Al-6Mg during hot deformation has been studied using hot compression test. The tests were performed at temperatures of 350, 450, and 550°C and strain rates of 0.001, 0.1, and 1s -1. Due to the effects of friction and adiabatic heating generated during compression, the attained true stress-true strain curves have been corrected. After correction of friction effect, the virtual work hardening has been removed from stress-strain curves. The flow stress increases and reaches a steady state after correction of adiabatic heating effect. Corrected curves and microstructural examinations exhibit the occurrence of dynamic recovery during hot compression of the alloy. The... 

    Synthesis and characterization of Al-SiC nanocomposites produced by mechanical milling and sintering

    , Article Advanced Composite Materials ; Volume 20, Issue 1 , 2011 , Pages 13-27 ; 09243046 (ISSN) Kamrani, S ; Razavi Hesabi, Z ; Riedel, R ; Seyed Reihani, S. M ; Sharif University of Technology
    Abstract
    Aluminum powder and various volume fractions of SiC particles with an average diameter of 50 nm were milled by a high-energy planetary ball mill to produce nanocrystalline Al-SiC nanocomposite powders. Double pressing/sintering process was used to consolidate powders to cylindrical specimens. It was shown that a double cycle of cold pressing and sintering can be utilized to obtain high density Al-SiC nanocomposite parts without using a hot-working step. High resolution scanning electron microscopy (HRSEM), X-ray diffraction (XRD) and laser particle size analyzer (PSA) were used to study the morphological and microstructural evolution of nanocomposite powders and bulk samples. The role of... 

    Evaluation of Structure of Powder-thixoformed A390 Alloy

    , M.Sc. Thesis Sharif University of Technology Mokhtarpour, Abdollah (Author) ; Ashuri, Hossein (Supervisor)
    Abstract
    Hypereutectic A390 alloy has some exclusive specification among aluminum alloys because of its' excellent properties such as high wear resistance and low thermal expansion. In this research powder-thixoforming method, a compilation of powder and thixoforming methods is used for production of parts. In this method gas atomized powder of pre-fabricated alloy was consolidated by hot pressing under argon atmosphere and converted to an acceptable feedstock for thixoforming stage. The feedstock is reheated to semi solid region and rapidly transferred to a injection sleeve with central runner. The semi-solid feedstock is injected in a step die by a hydraulic press of 1 m/s ram speed. According to... 

    Hot workability of cast and wrought Ni–42Cu alloy through hot tensile and compression tests

    , Article Transactions of Nonferrous Metals Society of China (English Edition) ; Volume 26, Issue 6 , 2016 , Pages 1589-1597 ; 10036326 (ISSN) Arjmand, M ; Abbasi, S. M ; Karimi Taheri, A ; Momeni, A ; Sharif University of Technology
    Nonferrous Metals Society of China 
    Abstract
    In order to analyze the flow behavior and workability of Ni–42Cu in cast and wrought conditions, hot deformation tests were performed at temperatures and strain rates within the ranges of 900–1150 °C and 0.001–1 s−1, respectively. Tensile tests showed a “hot ductility trough” at 950 °C for both alloys. The drop in hot ductility was more considerable in the cast alloy because of the sluggish dynamic recrystallization. The hot ductility drop and grain boundary cracking, particularly in the cast alloy, were attributed to the segregation of detrimental atoms to the boundaries. It was shown that the hot ductility of the wrought alloy could be improved with increasing strain rate. It was... 

    Fabrication, characterization and mechanical properties of hybrid composites of copper using the nanoparticulates of SiC and carbon nanotubes

    , Article Materials Science and Engineering A ; Volume 572 , 2013 , Pages 83-90 ; 09215093 (ISSN) Akbarpour, M. R ; Salahi, E ; Alikhani Hesari, F ; Simchi, A ; Kim, H. S ; Sharif University of Technology
    Abstract
    Copper based hybrid composites containing nano-sized silicon carbide and carbon nanotubes reinforcements with minimal porosity were fabricated via mechanical milling followed by hot pressing technique. Microstructures of the powders and consolidated materials were studied using scanning electron microscope, X-ray diffraction, Raman spectroscopy, and scanning transmission electron microscope. Microstructural characterization of the materials revealed that the addition of nanosized silicon carbide reinforcement lowered the grain growth rate and enhanced the homogenization during mechanical milling. Microhardness measurements and compression test showed considerable improvements in mechanical... 

    Microstructural evolution of Al-20Si-5Fe alloy during rapid solidification and hot consolidation

    , Article Rare Metals ; Volume 28, Issue 6 , 2009 , Pages 639-645 ; 10010521 (ISSN) Rajabi, M ; Vahidi, M ; Simchi, A ; Davami, P ; Sharif University of Technology
    Abstract
    Al-20Si-5Fe melt was rapidly solidified into particles and ribbons and then consolidated to near full density by hot pressing at 400°C/250 MPa/1 h. According to the eutectic-growth and dendritic-growth velocity models, the solidification front velocity and the amount of undercooling were estimated for the particles with different sizes. Values of 0.43-1.2 cm/s and 15-28 K were obtained. The secondary dendrite arm spacing revealed a cooling rate of 6 × 105 K/s for the particles with an average size of 20 μm. Solidification models for the ribbons yielded a cooling rate of 5 × 107 K/s. As a result of the higher cooling rate, the melt-spun ribbons exhibited considerable microstructural... 

    Physicomechanical properties of spark plasma sintered carbon nanotube-containing ceramic matrix nanocomposites

    , Article Nanoscale ; Volume 9, Issue 35 , 2017 , Pages 12779-12820 ; 20403364 (ISSN) Azarniya, A ; Sovizi, S ; Azarniya, A ; Rahmani Taji Boyuk, M. R ; Varol, T ; Nithyadharseni, P ; Madaah Hosseini, H. R ; Ramakrishna, S ; Reddy, M. V ; Sharif University of Technology
    Abstract
    Recently, a wide variety of research works have focused on carbon nanotube (CNT)-ceramic matrix nanocomposites. In many cases, these novel materials are produced through conventional powder metallurgy methods including hot pressing, conventional sintering, and hot isostatic pressing. However, spark plasma sintering (SPS) as a novel and efficient consolidation technique is exploited for the full densification of high-temperature ceramic systems. In these binary nanocomposites, CNTs are added to ceramic matrices to noticeably modify their inferior properties and SPS is employed to produce fully dense compacts. In this review, a broad overview of these systems is provided and the potential... 

    Tribological characteristics of self-lubricating nanostructured aluminum reinforced with multi-wall CNTs processed by flake powder metallurgy and hot pressing method

    , Article Diamond and Related Materials ; Volume 90 , 2018 , Pages 93-100 ; 09259635 (ISSN) Akbarpour, M. R ; Alipour, S ; Najafi, M ; Sharif University of Technology
    Elsevier Ltd  2018
    Abstract
    Ultrafine-grained Al-CNT (2 and 4 vol%) composites were successfully fabricated using the flake powder metallurgy and hot pressing route, and the microstructure and tribological properties of the produced composites were studied. The results showed that the coefficient of friction and the wear rate of Al decrease with the addition of the CNT reinforcement. A carbon-rich film formed on the worn surfaces during wear test, which prevented the Al oxidation and yielded the self-lubricating effect for the composites. This improvement in the wear behavior of the composites can be attributed to the simultaneous effects of the ultrafine-grained matrix and strengthening and self-lubricating properties... 

    Microstructural and mechanical characteristics of hybrid SiC/Cu composites with nano- and micro-sized SiC particles

    , Article Ceramics International ; 2018 ; 02728842 (ISSN) Akbarpour, M. R ; Mousa Mirabad, H ; Alipour, S ; Sharif University of Technology
    Elsevier Ltd  2018
    Abstract
    Hybrid Cu-SiC composites have been highly considered in order to achieve a combination of electrical and thermal properties along with high strength and wear resistance. However, limited investigations have ever been conducted over the effects of using hybrid (combination of nano and micro size) particles on the wear resistance behavior of these composites. Hence, in the present study, Cu-SiC nanocomposite with 4 vol% nanosize and 4 vol% microsize SiC, and Cu-SiC microcomposite with 8 vol% micro- SiC were fabricated through mechanical milling and hot pressing process. Results revealed the homogeneous dispersion of SiC particles in the matrix, high densification, and ultrafine-grain matrix... 

    Improved wear, mechanical, and biological behavior of UHMWPE-HAp-zirconia hybrid nanocomposites with a prospective application in total hip joint replacement

    , Article Journal of Materials Science ; 2018 ; 00222461 (ISSN) Salari, M ; Mohseni Taromsari, S ; Bagheri, R ; Faghihi Sani, M. A ; Sharif University of Technology
    Springer New York LLC  2018
    Abstract
    Medical engineering advances in total joint replacements and societies’ rising demand for long-lasting materials have proven it essential to manufacture materials that are more similar to the original tissue in the fields of mechanical, tribological, and biological properties. Ultra-high molecular weight polyethylene (UHMWPE) is a polymer widely used in arthroplasty applications due to its biocompatibility, chemical stability, and reasonable mechanical properties; however, it still fails to entirely meet the standards of the hip joint implant. In this study, different concentrations of nanosized zirconia were added to UHMWPE and HAp matrix with an intended application in arthroplasty.... 

    An Investigation on in-situ Synthesis and Wear Behavior of Al-Al3Ti Nanocomposite Produced via Mechanical Alloying/Hot-Press Technique

    , M.Sc. Thesis Sharif University of Technology Hejazi Dehaghani, Mohammad Mehdi (Author) ; Maddah Hosseini, Hamid Reza (Supervisor)
    Abstract
    In the present investigation, the mechanical alloying (MA) technique was employed to produce nanocrystalline Al-Ti alloys. Elemental Al and Ti powders were mixed with different compositions (0, 5, 10, and 20 wt.% Ti) and then, milled in a planetary ball-mill up to 40 h. The variations of powder morphology and particle size, apparent and tap densities, microstructure, grain size, lattice strain, and microhardness were studied with increasing the milling time. While dissolution of Ti in the Al matrix resulted to the formation of supersaturated Al-Ti solid solution in the samples containing 5 and 10 wt.% Ti, the specimen with 20 wt.% Ti, eventually, led to nanocomposite powder with different... 

    Fabrication of Al /Al3Ti in-situ Composite by Mechanical Alloying and Two-Step Hot Press

    , M.Sc. Thesis Sharif University of Technology Pelaseyed, Sogol (Author) ; Maddah Hosseini, Hamid Reza (Supervisor)
    Abstract
    Al /Al3Ti in-situ composite have been fabricated by mechanical alloying and two-step hot pressing of powders containing Al and 20%wt Ti. Samples were characterized by using optical microscopy, density measurement, brinel hardness, XRD analysis. An increasing density was observed with increasing pressure until certain pressure and after that the density of composite decreased, which can be attributed to the increase in the level of porosity level and the amount of forming Al3Ti. The samples that hot pressed under cycle 5 and 6, showed the most volume fraction of in-situ phases on the matrix. The wear behavior of Al based composites reinforced with in situ Al3Ti particles has been investigated...