Loading...
Search for: immiscibility
0.005 seconds
Total 43 records

    Experimental Investigation of Long time Behavior of Interfacial Waves in a Two Layer Immiscible Fluid

    , M.Sc. Thesis Sharif University of Technology Safaie Nematollahi, Ammar (Author) ; Jamali, Mirmosadegh (Supervisor)
    Abstract
    The motion of a surface wave in a two-layer fluid can lead to generation of sub-harmonic interfacial waves through a nonlinear resonant interaction mechanism. The interfacial waves grow exponentially in time until they reach a maximum amplitude and then oscillate down to a final amplitude, referred to as ultimate amplitude, in long term. This may lead to considerable mixing of the layers in miscible fluid and increase the thickness of the diffuse layer. Experiments show that the diffuse layer causes frequency shift and decreases the ultimate amplitude. In this study, long time behavior of interfacial waves in a two layer immiscible fluid was investigated. A two-layer immiscible system... 

    Experimental Investigation of Melting of Two Immiscible Phase Change Material

    , M.Sc. Thesis Sharif University of Technology Momeni, Meisam (Author) ; Behshad Shafii, Mohammad (Supervisor)
    Abstract
    Heat transfer associated with phase change occurs in many physical phenomena. One of the ways of thermal energy storage is the use of latent heat phase change. Therefore, it is important to know the thermal performance of phase change material. In this research, the aim is to investigate the process of phase change of a system consists of two immiscible phase change materials and the comparison of this system with a system consists of one phase change material. The experiments with the two materials system is conducted in two ways. In the first state, that is the normal state, denser material is placed in the bottom and in the second state, denser material is placed in the top. Constant heat... 

    Core Scale Mechanistic Investigation of the Effect of Gas Composition on Enhanced Oil Recovery Mechanisms during Injection at Different Miscibility Conditions

    , M.Sc. Thesis Sharif University of Technology Shokri Nazarabad, Farshad (Author) ; Fatemi, Mobeen (Supervisor)
    Abstract
    The gas injection is one of the most common methods of increasing recovery from oil reservoirs, especially when a suitable source for gas is available. For example, available sources of carbon dioxide or associated gas produced from the reservoir or adjacent reservoirs. In general, the gas injection may be miscible or immiscible, which is a function of the type and composition of the gas-oil and the reservoir conditions in terms of temperature and pressure. In miscible gas injection, different mechanisms such as molecular diffusion of gas in oil or evaporation of lighter components of oil in gas and condensation of heavier components of gas in the oil phase can be shown. To occur of such... 

    Pore Scale Simulation of the Fluid/Fluid and Fluid/Rock Interactions on the Performance of Water Injection

    , M.Sc. Thesis Sharif University of Technology Mousavi, Mohammad Javad (Author) ; Fatemi, Mobin (Supervisor) ; Pishvaie, Mahmood Reza (Co-Supervisor)
    Abstract
    Two-phase fluid flow physics in porous media is applied in various fields. Studies have shown that wettability and surface tension, which represent fluid-rock and fluid-fluid interactions, have a significant effect on the dynamics of the immiscible displacement. Although the effects of wettability and surface tension on the macroscopic behavior of fluid flow are known, there is less understanding of it at the micro scale. Considering the essential role of wettability and surface tension in various fields, this project seeks to investigate the effects of wettability and surface tension on the movement and distribution of fluids and the dominant displacement mechanisms within the porous media... 

    Prediction of Hydraulic Fracturing Technology in Naturally Fractured Rocks, by Considering Immiscible Two-phase Flow

    , Ph.D. Dissertation Sharif University of Technology Ranjbaran, Mohammad (Author) ; Taghikhani, Vahid (Supervisor) ; Ayatollahi, Shahab (Supervisor) ; Shad, Saeed (Supervisor) ; Ranjbaran, Abdolrasul ($item.subfieldsMap.e)
    Abstract
    To have a deeper understanding of Hydraulic fracturing operation, in this study four important parts in this field was developed and simulated. In the first part, continuity and momentum equations for a single phase flow in a propagating penny-shaped fracture inside an impermeable matrix was revisited based on a fixed coordinate system. Its correctness was validated against experimental data and its features were compared with the well-known lubrication theory in analytical form. The new derived continuity equation caused the fracture tip to have a positive and finite pressure while, the conventional model predicted negative infinity for that. In the second part, Finite Volume method was... 

    Pore Scale Experimental Investigation of Increasing the Efficiency of EOR Methods in Heavy Oil Fractured Reservoirs Using Ultrasonic Wave Technology

    , M.Sc. Thesis Sharif University of Technology Seydi, Mahdi (Author) ; Ghotbi, Siroos (Supervisor) ; Ghazanfar, Mohammad Hossein (Co-Advisor) ; Taghikhani, Vahid (Co-Advisor)
    Abstract
    Nowadays, application of ultrasonic wave technology as a novel method of enhancing oil recovery and also gas and oil well stimulation is prevailing. Not only this method is environment friendly, but also it is economic. Although the application of this method is proved to be of outstanding positive influences in field operations. In this study, it is intended to investigate the effect of ultrasonic waves on the rate and final recovery of miscible and immiscible injection of fluids as Enhanced Oil Recovery (EOR) methods by using the Micro model apparatus and Although the effect of the waves on fluid flow through the porous media can be studied. The results of this work are a good guidance to... 

    Experimental and Simulation Studies of Oil Recovery Via Immiscible and Near Miscible Simultaneous Water and CO2 Injection in an Iranian Reservoir

    , M.Sc. Thesis Sharif University of Technology Seyyedsar, Mehdi (Author) ; Taghikhani, Vahid (Supervisor) ; Ghazanfari, Mohammad Hossein (Supervisor)
    Abstract
    A simultaneous water and CO2 injection study using sandstone cores with 21°API Sarvak (Azadegan field) oil has performed to evaluate oil recovery under four injection modes: secondary immiscible, secondary near-miscible, tertiary immiscible, and tertiary near-miscible. It is demonstrated that swag injection (secondary and tertiary) is an effective method for the recovery of significant amount of oil or residual oil from water-flooded porous media, but there is always some bypassing (at the pore level) of the oil due to topological effects, water-shielding and dead-end pores. In non-homogeneous porous medium, oil recovery is depending to SWAG ratio in immiscible and near-miscible conditions.... 

    Experimental Investigation of Enhanced Oil Recovery Using N2 Alternating CO2 Gas Injection

    , M.Sc. Thesis Sharif University of Technology Rezaei, Morteza (Author) ; Vossoughi, Manoochehr (Supervisor) ; Shadizadeh, Reza (Supervisor) ; Kharrat, Riaz (Supervisor) ; Ghazanfari, Mohammad (Supervisor)
    Abstract
    Gas injection is a well-known enhanced recovery method which can improve recovery using two different displacement processes, miscible and immiscible. Typical non-hydrocarbon gases which have been utilized in these processes are carbon-dioxide and nitrogen. These gases are usually injected separately and have been rarely utilized together as a tertiary recovery process.
    In this paper, we have focused on sequential carbon-dioxide and nitrogen gas injection as a novel EOR method. The periodic injections of carbon-dioxide and nitrogen have been repeated for six injection pore volumes. Sensitivity analysis of injection pressure, injection volume and injection rate have been also investigated... 

    Experimental investigation and evaluation of three-phase relative permeability models

    , Article Journal of Petroleum Science and Engineering ; Vol. 79, issue. 2-Jan , October , 2011 , p. 45-53 ; ISSN: 09204105 Masihi, M ; Javanbakht, L ; Bahaloo Horeh, F ; Rasaei, M. R ; Sharif University of Technology
    Abstract
    Petroleum production often involves simultaneous flow of three immiscible fluids through underground porous rock formation. In this work, we measure two- and three-phase relative permeabilities with which we examine the performance of various 3-phase relative permeability models. The rock-fluid systems used in these measurements are comprised of sandstone samples, oil (n-decane), water (Nacl, 6000. ppm) and gas (nitrogen). The measurements were carried out at 23 ± 1 °C and 5.44 MPa. Two- and three-phase relative permeability measurements were obtained using the steady-state technique. The three-phase experiments were conducted such that the flow rates of brine and gas were increased... 

    Invasion percolation in presence of gravity

    , Article Iranian Journal of Chemistry and Chemical Engineering ; Vol. 29, issue. 1 , 2010 , p. 71-82 ; ISSN: 10219986 Ma'Soum, S ; Masihi, M ; Sharif University of Technology
    Abstract
    Simultaneous capillary dominated displacement of the wetting and non-wetting phases are processes of interest in many disciplines including modeling of the penetration of polluting liquids in hydrology or the secondary migration in petroleum reservoir engineering. Percolation models and in particular invasion percolation is well suited to characterize the slow immiscible displacement of two fluids when both the gravity and viscous effects are negligible. In particular, the characteristic of the percolating cluster and the other important percolation properties at the breakthrough can be inferred. However, with the inclusion of the gravity forces, the behavior may change. For example, as the... 

    An experimental investigation of sequential CO2 and N 2 gas injection as a new EOR Method

    , Article Energy Sources, Part A: Recovery, Utilization and Environmental Effects ; Vol. 36, Issue. 17 , 2014 , pp. 1938-1948 ; ISSN: 15567230 Rezaei, M ; Shadizadeh, S. R ; Vosoughi, M ; Kharrat, R ; Sharif University of Technology
    Abstract
    Typical non-hydrocarbon gases, which have been utilized in miscible and immiscible processes, are carbon dioxide and nitrogen. These gases are usually injected separately and have been rarely utilized together as a tertiary recovery process. In this article, the authors have experimentally focused on sequential carbon dioxide and nitrogen gas injection as a new enhanced oil recovery method. The periodic injections of carbon dioxide and nitrogen have been repeated for six injection pore volumes. Sensitivity analysis of injection pressure, injection volume, and injection rate has also been investigated in core flood experiments. The experimental results have revealed that a sequential miscible... 

    A statistical inference approach for the identification of dominant parameters in immiscible nitrogen injection

    , Article Energy Sources, Part A: Recovery, Utilization and Environmental Effects ; Vol. 36, Issue. 12 , 2014 , Pages 1285-1295 ; ISSN: 15567036 Moradi, S ; Ghazvini, M. G ; Dabir, B ; Emadi, M. A ; Rashtchian, D ; Sharif University of Technology
    Abstract
    Screening analysis is a useful guideline that helps us with proper field selection for different enhanced oil recovery processes. In this work, reservoir simulation is combined with experimental design to estimate the effect of reservoir rock and fluid properties on performance of immiscible nitrogen injection. Reservoir dip, thickness, and horizontal permeability are found to be the most influential parameters. Possible interactions of parameters are also discussed to increase reliability and robustness of screening results. Finally, significance of both main effects and interactions are evaluated by employing a statistical inference approach (hypothesis testing) and results are compared to... 

    Effect of gamma ray on poly(lactic acid)/poly(vinyl acetate-co-vinyl alcohol) blends as biodegradable food packaging films

    , Article Radiation Physics and Chemistry ; Vol. 96 , 2014 , pp. 12-18 ; ISSN: 0969806X Razavi, S. M ; Dadbin, S ; Frounchi, M ; Sharif University of Technology
    Abstract
    Poly(lactic acid) (PLA)/poly(vinyl acetate-. co-vinyl alcohol) [P(VAc-. co-VA)] blends as new transparent film packaging materials were prepared at various blend compositions and different vinyl alcohol contents. The blends and pure PLA were irradiated by gamma rays to investigate the extent of changes in the packaging material during gamma ray sterilization process. The miscibility of the blends was dependent on the blend composition and vinyl alcohol content; gamma irradiation had little effect on the extent of miscibility. The glass transition temperature of pure PLA and PLA/P(VAc-. co-VA) miscible blends reduced after irradiation. On the other hand in PLA/P(VAc-. co-VA) immiscible... 

    A comparison of WAG and SWAG processes: Laboratory and simulation studies

    , Article Energy Sources, Part A: Recovery, Utilization and Environmental Effects ; Volume 35, Issue 23 , 2013 , Pages 2225-2232 ; 15567036 (ISSN) Heidari, P ; Kharrat, R ; Alizadeh, N ; Ghazanfari, M. H ; Sharif University of Technology
    2013
    Abstract
    The use of water-alternating-gas injection can potentially lead to improved oil recovery from the fields; simultaneous water and gas injection is a form of water-alternating-gas injection. However, there is still an incomplete understanding of these processes and the need for comparative work is inevitable. Core flood experiments and compositional simulations of water-alternating-gas and simultaneous water and gas processes are presented. Immiscible, near miscible, and miscible modes of injection are covered. Matching process is done and optimization of design parameters (injection rate, slug size, water-alternating-gas ratio, and injection gas) is performed. Experimental data demonstrate... 

    Hydro-mechanical modeling of cohesive crack propagation in multiphase porous media using the extended finite element method

    , Article International Journal for Numerical and Analytical Methods in Geomechanics ; Volume 37, Issue 10 , 2013 , Pages 1247-1279 ; 03639061 (ISSN) Mohammadnejad, T ; Khoei, A. R ; Sharif University of Technology
    2013
    Abstract
    SUMMARY: In this paper, a numerical model is developed for the fully coupled hydro-mechanical analysis of deformable, progressively fracturing porous media interacting with the flow of two immiscible, compressible wetting and non-wetting pore fluids, in which the coupling between various processes is taken into account. The governing equations involving the coupled solid skeleton deformation and two-phase fluid flow in partially saturated porous media including cohesive cracks are derived within the framework of the generalized Biot theory. The fluid flow within the crack is simulated using the Darcy law in which the permeability variation with porosity because of the cracking of the solid... 

    Immiscible Displacement of a Wetting Fluid by a Non-wetting One at High Capillary Number in a Micro-model Containing a Single Fracture

    , Article Transport in Porous Media ; Volume 94, Issue 1 , 2012 , Pages 289-301 ; 01693913 (ISSN) Kamari, E ; Rashtchian, D ; Shadizadeh, S. R ; Sharif University of Technology
    Abstract
    Most reservoirs in Iran are heterogeneous fractured carbonate reservoirs. Heterogeneity causes an earlier breakthrough and an unstable front which leads to a lower recovery. A series of experiments were conducted whereby the distilled water displaced n-Decane in strongly oil-wet glass micro-models containing a single fracture. Experimental data from image analysis of immiscible displacement processes are used to modify the Buckley-Leverett and fractional flow equations by a heterogeneity factor. It is shown that the heterogeneity factor in the modified equations can be expressed as a function of fracture length and orientation  

    The Effect of fracture geometrics on breakthrough time in the immiscible displacement process through strongly oil wet fractured porous media: Experimental investigation

    , Article Energy Sources, Part A: Recovery, Utilization and Environmental Effects ; Volume 34, Issue 10 , 2012 , Pages 867-876 ; 15567036 (ISSN) Kamari, E ; Shadizadeh, S. R ; Rashtchian, D ; Sharif University of Technology
    2012
    Abstract
    The immiscible process appears to be one of the first feasible methods for the extraction of oil reserves. However, there is a lack of fundamental understanding of how fracture geometrical characteristics control the efficiency of oil recovery in this type of enhanced oil recovery technique. In this article, a series of experiments were conducted whereby the distilled water displaced n-decane in strongly oil wet glass micro-models having different fracture geometries. Breakthrough time, as a function of injected pore volume of distilled water, was measured using image analysis of the provided pictures. It has been observed that when the fractures' length is increased, the breakthrough time... 

    Characterizing the Role of Shale Geometry and Connate Water Saturation on Performance of Polymer Flooding in Heavy Oil Reservoirs: Experimental Observations and Numerical Simulations

    , Article Transport in Porous Media ; Volume 91, Issue 3 , 2012 , Pages 973-998 ; 01693913 (ISSN) Mohammadi, S ; Masihi, M ; Ghazanfari, M. H ; Sharif University of Technology
    Abstract
    Many heavy oil reservoirs contain discontinuous shales which act as barriers or baffles to flow. However, there is a lack of fundamental understanding about how the shale geometrical characteristics affect the reservoir performance, especially during polymer flooding of heavy oils. In this study, a series of polymer injection processes have been performed on five-spot glass micromodels with different shale geometrical characteristics that are initially saturated with the heavy oil. The available geological characteristics from one of the Iranian oilfields were considered for the construction of the flow patterns by using a controlled-laser technology. Oil recoveries as a function of pore... 

    Optimal conditions for immiscible recycle gas injection process: A simulation study for one of the Iranian oil reservoirs

    , Article Scientia Iranica ; Volume 18, Issue 6 , 2011 , Pages 1407-1414 ; 10263098 (ISSN) Mohammadi, S ; Kharrat, R ; Khalili, M ; Mehranfar, M ; Sharif University of Technology
    2011
    Abstract
    Immiscible gas injection is one of the most common enhanced oil recovery methods used under various reservoir conditions. In this work, the immiscible recycle gas injection, as an EOR scenario for improving recovery efficiency in one of the south-west Iranian oil reservoirs, is simulated by a commercial simulator, ECLIPSE. The reservoir fluid is light oil, with an API of 43. The oil bearing formations are carbonate, and so a dual porosity/dual permeability behavior was chosen for better representation of the fracture system. Different sensitivity analyses with respect to several parameters like the number and location of injection/production wells, production/injection rate, completion... 

    Numerical study of factors influencing relative permeabilities of two immiscible fluids flowing through porous media using lattice Boltzmann method

    , Article Journal of Petroleum Science and Engineering ; Volume 77, Issue 1 , 2011 , Pages 135-145 ; 09204105 (ISSN) Ghassemi, A ; Pak, A ; Sharif University of Technology
    Abstract
    Relative permeability curves have practical implications in petroleum reservoir simulations. Study of the effects of reservoir wettability, pore shape geometry, and viscosity ratio of flowing fluids on the relative permeabilities is of great importance in reservoir modeling. In this paper, lattice Boltzmann method (LBM) is employed for analyzing the two-fluid flow in rigid porous media. The developed LBM code proved to be a robust numerical tool for analyzing the factors that influence the relative permeabilities of two immiscible fluids flowing through porous media. The numerically derived relative permeability curves demonstrate that in neutrally wet reservoirs, the effect of viscosity...