Loading...
Search for: implantation
0.012 seconds
Total 136 records

    Recent Progress of Triboelectric Nanogenerators for Biomedical Sensors: From Design to Application

    , Article Biosensors ; Volume 12, Issue 9 , 2022 ; 20796374 (ISSN) Rahimi Sardo, F ; Rayegani, A ; Matin Nazar, A ; Balaghiinaloo, M ; Saberian, M ; Mohsan, S. A. H ; Alsharif, M. H ; Cho, H. S ; Sharif University of Technology
    MDPI  2022
    Abstract
    Triboelectric nanogenerators (TENG) have gained prominence in recent years, and their structural design is crucial for improvement of energy harvesting performance and sensing. Wearable biosensors can receive information about human health without the need for external charging, with energy instead provided by collection and storage modules that can be integrated into the biosensors. However, the failure to design suitable components for sensing remains a significant challenge associated with biomedical sensors. Therefore, design of TENG structures based on the human body is a considerable challenge, as biomedical sensors, such as implantable and wearable self-powered sensors, have recently... 

    Deep learning in periodontology and oral implantology: A scoping review

    , Article Journal of Periodontal Research ; Volume 57, Issue 5 , 2022 , Pages 942-951 ; 00223484 (ISSN) Mohammad Rahimi, H ; Motamedian, S. R ; Pirayesh, Z ; Haiat, A ; Zahedrozegar, S ; Mahmoudinia, E ; Rohban, M. H ; Krois, J ; Lee, J. H ; Schwendicke, F ; Sharif University of Technology
    John Wiley and Sons Inc  2022
    Abstract
    Deep learning (DL) has been employed for a wide range of tasks in dentistry. We aimed to systematically review studies employing DL for periodontal and implantological purposes. A systematic electronic search was conducted on four databases (Medline via PubMed, Google Scholar, Scopus, and Embase) and a repository (ArXiv) for publications after 2010, without any limitation on language. In the present review, we included studies that reported deep learning models' performance on periodontal or oral implantological tasks. Given the heterogeneities in the included studies, no meta-analysis was performed. The risk of bias was assessed using the QUADAS-2 tool. We included 47 studies: focusing on... 

    Bone density may affect primary stability of anterior cruciate ligament reconstruction when organic core bone plug fixation technique used

    , Article Journal of Experimental Orthopaedics ; Volume 9, Issue 1 , 2022 ; 21971153 (ISSN) Dehestani, P ; Farahmand, F ; Borjali, A ; Bashti, K ; Chizari, M ; Sharif University of Technology
    Springer Science and Business Media Deutschland GmbH  2022
    Abstract
    Purpose: Core Bone Plug Fixation (CBPF) technique is an implant-less methodology for ACL reconstruction. This study investigates the effect of bone density on CBPF stability to identify the bone quality that is likely to benefit from this technique. Methods: Artificial blocks with 160 (Group 1), 240 (Group 2), and 320 (Group 3) kg/m3 densities were used to simulate human bone with diverse qualities. These groups are representative of the elderly, middle age and young people, respectively. A tunnel was made in each test sample using a cannulated drill bit which enabled harvesting the core bone plug intact. Fresh animal tendon grafts were prepared and passed through the tunnel, so the core... 

    Effects of heat treatment on the corrosion behavior and mechanical properties of biodegradable Mg alloys

    , Article Journal of Magnesium and Alloys ; Volume 10, Issue 7 , 2022 , Pages 1737-1785 ; 22139567 (ISSN) Mohammadi Zerankeshi, M ; Alizadeh, R ; Gerashi, E ; Asadollahi, M ; Langdon, T. G ; Sharif University of Technology
    National Engg. Reaserch Center for Magnesium Alloys  2022
    Abstract
    Biodegradable magnesium (Mg) alloys exhibit great potential for use as temporary structures in tissue engineering applications. Such degradable implants require no secondary surgery for their removal. In addition, their comparable mechanical properties with the human bone, together with excellent biocompatibility, make them a suitable candidate for fracture treatments. Nevertheless, some challenges remain. Fast degradation of the Mg-based alloys in physiological environments leads to a loss of the mechanical support that is needed for complete tissue healing and also to the accumulation of hydrogen gas bubbles at the interface of the implant and tissue. Among different methods used to... 

    A new approach for simultaneously improved osseointegration and antibacterial activity by electrochemical deposition of graphene nanolayers over titania nanotubes

    , Article Applied Surface Science ; Volume 580 , 2022 ; 01694332 (ISSN) Yahya Rahnamaee, S ; Bagheri, R ; Vossoughi, M ; khafaji, M ; Asadian, E ; Ahmadi Seyedkhani, S ; Samadikuchaksaraei, A ; Sharif University of Technology
    Elsevier B.V  2022
    Abstract
    Simultaneous enhancement of osseointegration and bacterial infection prohibition through surface modifications is a challenging but promising approach to achieve durable implantation. To that end, we present a multifunctional surface coating composed of graphene nanolayers and hierarchical well-aligned TiO2 nanotubes with a nanoporous top layer (cRTNT). FESEM studies reveal tunable increasing island morphologies of graphene nanolayers (G) on cRTNT by a cyclic voltammetry process. XPS analysis shows that the enhanced interface chemistry is due to TiO2-carbon bonding. The roughness of the sample containing a medium amount of graphene, cRTNT-75%GO, was calculated ∼289 nm, which was 543% higher... 

    A state-of-the-art review of the fabrication and characteristics of titanium and its alloys for biomedical applications

    , Article Bio-Design and Manufacturing ; Volume 5, Issue 2 , 2022 , Pages 371-395 ; 20965524 (ISSN) Sarraf, M ; Rezvani Ghomi, E ; Alipour, S ; Ramakrishna, S ; Liana Sukiman, N ; Sharif University of Technology
    Springer  2022
    Abstract
    Abstract: Commercially pure titanium and titanium alloys have been among the most commonly used materials for biomedical applications since the 1950s. Due to the excellent mechanical tribological properties, corrosion resistance, biocompatibility, and antibacterial properties of titanium, it is getting much attention as a biomaterial for implants. Furthermore, titanium promotes osseointegration without any additional adhesives by physically bonding with the living bone at the implant site. These properties are crucial for producing high-strength metallic alloys for biomedical applications. Titanium alloys are manufactured into the three types of α, β, and α + β. The scientific and clinical... 

    Bioinspired TiO2/chitosan/HA coatings on Ti surfaces: Biomedical improvement by intermediate hierarchical films

    , Article Biomedical Materials (Bristol) ; Volume 17, Issue 3 , 2022 ; 17486041 (ISSN) Rahnamaee, S. Y ; Ahmadi Seyedkhani, S ; Eslami Saed, A ; Sadrnezhaad, S. K ; Seza, A ; Sharif University of Technology
    Institute of Physics  2022
    Abstract
    The most common reasons for hard-tissue implant failure are structural loosening and prosthetic infections. Hence, in this study, to overcome the first problem, different bioinspired coatings, including dual acid-etched, anodic TiO2 nanotubes array, anodic hierarchical titanium oxide (HO), micro- and nanostructured hydroxyapatite (HA) layers, and HA/chitosan (HA/CS) nanocomposite, were applied to the titanium alloy surfaces. X-ray diffraction and FTIR analysis demonstrated that the in situ HA/CS nanocomposite formed successfully. The MTT assay showed that all samples had excellent cell viability, with cell proliferation rates ranging from 120% to 150% after 10 days. The HO coating... 

    Improving bactericidal performance of implant composite coatings by synergism between Melittin and tetracycline

    , Article Journal of Materials Science: Materials in Medicine ; Volume 33, Issue 6 , 2022 ; 09574530 (ISSN) Zarghami, V ; Ghorbani, M ; Pooshang Bagheri, K ; Shokrgozar, M. A ; Sharif University of Technology
    Springer  2022
    Abstract
    Methicillin resistance Staphylococcus aureus bacteria (MRSA) are serious hazards of bone implants. The present study was aimed to use the potential synergistic effects of Melittin and tetracycline to prevent MRSA associated bone implant infection. Chitosan/bioactive glass nanoparticles/tetracycline composite coatings were deposited on hydrothermally etched titanium substrate. Melittin was then coated on composite coatings by drop casting method. The surfaces were analyzed by FTIR, XRD, and SEM instruments. Tetracycline in coatings revealed multifunctional behaviors include bone regeneration and antibacterial activity. Releasing ALP enzyme from MC3T3 cells increased by tetracycline, so it is... 

    Ag-incorporated biodegradable Mg alloys

    , Article Materialia ; Volume 23 , 2022 ; 25891529 (ISSN) Mohammadi Zerankeshi, M ; Alizadeh, R ; Sharif University of Technology
    Elsevier B.V  2022
    Abstract
    Biodegradable magnesium implants possess excellent mechanical properties and biocompatibility, which make them suitable candidates to be employed as temporary structures for the bone regeneration purposes. However, there are still important challenges which limit their extensive use in biomedical applications, where the most important ones include implant-associated infection, rapid degradation rate and the need for improved mechanical properties. Silver, which is a strong antimicrobial agent, has been extensively used for improving the mentioned challenges in biodegradable Mg alloys either as alloying element or incorporation in the protective coating. Ag addition has been reported to have... 

    Design of the micropump and mass-transfer compartment of a microfluidic system for regular nonenzymatic glucose measurement

    , Article Biotechnology Reports ; Volume 34 , 2022 ; 2215017X (ISSN) Najmi, A ; Saidi, M. S ; Kazemzadeh Hannani, S ; Sharif University of Technology
    Elsevier B.V  2022
    Abstract
    The aim of this paper is to design and numerically simulate the mass-transfer compartment and piezoelectric micropump of an implantable integrated microfluidic device for regular microdialysis-based nonenzymatic measurement of glucose level in diabetic patients. The device function is based on the process that the piezoelectric micropump pumps the dialysis fluid into the mass-transfer compartment microchannels, where the interstitial fluid (ISF) glucose diffusion into this dialysis fluid gives it a glucose content, then detected and measured in the sensor section. This diffusion takes place through the semipermeable membranes located in the microchannels at the base of the hollow... 

    Green composites in bone tissue engineering

    , Article Emergent Materials ; Volume 5, Issue 3 , 2022 , Pages 603-620 ; 25225731 (ISSN) Jouyandeh, M ; Vahabi, H ; Rabiee, N ; Rabiee, M ; Bagherzadeh, M ; Saeb, M. R ; Sharif University of Technology
    Springer Nature  2022
    Abstract
    Natural and biodegradable polymers are of particular interest as green sources with low-cost and environmentally friendly features, and have been widely used for polymer composite development. The term “Green Composites” refers to polymer/filler systems in which polymer, filler, or sometimes both components are green in view of sources from which they are yielded or their biodegradability. Natural fibers obtained from plants, animals, and/or geological processes are a big class of green sources widely applied in green composite development. There has also been continued research on recycling of green composite as well as developing hybrid systems for advanced applications. In view of their... 

    Antibacterial Ti–Cu implants: A critical review on mechanisms of action

    , Article Materials Today Bio ; Volume 17 , 2022 ; 25900064 (ISSN) Mahmoudi, P ; Akbarpour, M. R ; Lakeh, H. B ; Jing, F ; Hadidi, M. R ; Akhavan, B ; Sharif University of Technology
    Elsevier B.V  2022
    Abstract
    Titanium (Ti) has been widely used for manufacturing of bone implants because of its mechanical properties, biological compatibility, and favorable corrosion resistance in biological environments. However, Ti implants are prone to infection (peri-implantitis) by bacteria which in extreme cases necessitate painful and costly revision surgeries. An emerging, viable solution for this problem is to use copper (Cu) as an antibacterial agent in the alloying system of Ti. The addition of copper provides excellent antibacterial activities, but the underpinning mechanisms are still obscure. This review sheds light on such mechanisms and reviews how incorporation of Cu can render Ti–Cu implants with... 

    Engineered conducting polymer-based scaffolds for cell release and capture

    , Article International Journal of Polymeric Materials and Polymeric Biomaterials ; 2022 ; 00914037 (ISSN) Mahdavi, S. S ; Abdekhodaie, M. J ; Sharif University of Technology
    Taylor and Francis Ltd  2022
    Abstract
    Conducting polymer-based devices and scaffolds has become remarkably popular due to their properties such as conductivity, tunable electrochemical properties, and straightforward fabrication procedures. Hence, they have versatile applications and can be used as implants, biosensors, cell capture/release devices, and regenerative medicine scaffolds. This review addresses the effect of conductive polymers on cell behavior since their conductive features can be applied to simulate a cellular response. Moreover, the impact of polymer chemical and physical properties on cellular response has been discussed. Recent biomedical engineering approaches used for cell capture and release were reviewed... 

    Niosomal formulation for antibacterial applications

    , Article Journal of Drug Targeting ; Volume 30, Issue 5 , 2022 , Pages 476-493 ; 1061186X (ISSN) Mehrarya, M ; Gharehchelou, B ; Haghighi Poodeh, S ; Jamshidifar, E ; Karimifard, S ; Farasati Far, B ; Akbarzadeh, I ; Seifalian, A ; Sharif University of Technology
    Taylor and Francis Ltd  2022
    Abstract
    Infection is a disease that is mainly caused by different Gram-negative and Gram-positive bacteria. Treatment of infections requires a considerable amount of antibiotics, which can cause serious damage to the patient's body. Delivering the antibiotic only to the site of infection can prevent these destructive effects, such as the destruction of the normal intestinal flora. The drug delivery system through carriers will take antibiotics into a part of the body involved in the disease. Niosome nanoparticles, which have been made from non-ionic surfactants, have been emerging as ideal drug/antibiotics delivery vehicles. Recently, niosome formulations have been targeted to reduce toxicity and... 

    Development of HAp/GO/Ag coating on 316 LVM implant for medical applications

    , Article Journal of the Mechanical Behavior of Biomedical Materials ; Volume 126 , 2022 ; 17516161 (ISSN) Ahmadi, R ; Izanloo, S ; Sharif University of Technology
    Elsevier Ltd  2022
    Abstract
    In this study, antibacterial activity, biocompatibility, and corrosion resistance of 316 LVM implants were improved using the development of HAp/GO/Ag nanocomposite coatings by the dip-coating method. The XRD and FTIR results confirmed the synthesis of HAp/GO/Ag nanocomposites. HAp/Ag nanoparticles (68 nm) bound to epoxy, hydroxyl, and carboxyl functional groups on GO sheets (size of GO sheets varies from 255 to 1480 nm) by electrostatic interaction. FESEM images showed that HAp/GO/Ag coatings had higher density and fewer micro-cracks than pure HAp coatings. In addition, HAp/GO/Ag coatings showed optimized nano-hardness (4.5 GPa) and elasticity modulus (123 GPa). The results of... 

    Laser textured novel patterns on Ti6Al4V alloy for dental implants surface improvement

    , Article Journal of Laser Applications ; Volume 33, Issue 4 , 2021 ; 1042346X (ISSN) Dabbagh, G. R ; Sadrnezhaad, S. K ; Shoja Razavi, R ; Nourbakhsh, A. A ; Hassanzadeh Nemati, N ; Sharif University of Technology
    Laser Institute of America  2021
    Abstract
    Creating laser texture on dental implants is a novel method for accelerating osseointegration and prolongation of lifespan. The purpose of this research was twofold: (1) Creating intersecting lines pattern with different angles (0°, 15°, 30°, 45°, 60°, 75°, and 90°) on the surface of Ti6Al4V, using pulse Nd:YAG laser with a wavelength of 1064 nm and a pulse length of 170 ns and (2) comparing optical and SEM images, EDS analyses, contact angles (CAs), and surface free energies (FEs) for different intersecting lines angles. CA and FE depended on the intersecting lines angle according to Y = Y 0 + A sin (x B + C), where Y is the CA or FE; x is the intersecting lines angle; and Y0, A, B, and C... 

    Mixed oxide nanotubes in nanomedicine: A dead-end or a bridge to the future?

    , Article Ceramics International ; Volume 47, Issue 3 , 2021 , Pages 2917-2948 ; 02728842 (ISSN) Sarraf, M ; Nasiri Tabrizi, B ; Yeong, C. H ; Madaah Hosseini, H. R ; Saber-Samandari, S ; Basirun, W. J ; Tsuzuki, T ; Sharif University of Technology
    Elsevier Ltd  2021
    Abstract
    Nanomedicine has seen a significant rise in the development of new research tools and clinically functional devices. In this regard, significant advances and new commercial applications are expected in the pharmaceutical and orthopedic industries. For advanced orthopedic implant technologies, appropriate nanoscale surface modifications are highly effective strategies and are widely studied in the literature for improving implant performance. It is well-established that implants with nanotubular surfaces show a drastic improvement in new bone creation and gene expression compared to implants without nanotopography. Nevertheless, the scientific and clinical understanding of mixed oxide... 

    A state-of-the-art review of the fabrication and characteristics of titanium and its alloys for biomedical applications

    , Article Bio-Design and Manufacturing ; 2021 ; 20965524 (ISSN) Sarraf, M ; Rezvani Ghomi, E ; Alipour, S ; Ramakrishna, S ; Liana Sukiman, N ; Sharif University of Technology
    Springer  2021
    Abstract
    Abstract: Commercially pure titanium and titanium alloys have been among the most commonly used materials for biomedical applications since the 1950s. Due to the excellent mechanical tribological properties, corrosion resistance, biocompatibility, and antibacterial properties of titanium, it is getting much attention as a biomaterial for implants. Furthermore, titanium promotes osseointegration without any additional adhesives by physically bonding with the living bone at the implant site. These properties are crucial for producing high-strength metallic alloys for biomedical applications. Titanium alloys are manufactured into the three types of α, β, and α + β. The scientific and clinical... 

    Comparison of periodontally compromised splinted teeth and implant supported fixed partial denture: a three-dimensional finite element analysis on bone response

    , Article Journal of long-term effects of medical implants ; Volume 31, Issue 2 , 2021 , Pages 1-8 ; 19404379 (ISSN) Amid, R ; Kadkhodazadeh, M ; Talebi Ardakani, M. R ; Movahhedy, M. R ; Mirakhori, M ; Hakimi, A ; Broukhim, M ; Sharif University of Technology
    NLM (Medline)  2021
    Abstract
    Introduction - This study aimed to compare the amount and pattern of stress and strain distributed around periodontally compromised splinted teeth and the two-implant abutments supported six-unit fixed partial denture (FPD) using finite element analysis (FEA). Methods and Materials - Six mandibular anterior teeth of a dental model were scanned and the scans were transferred to 3D CAD design and finite element software. Jaw bone was also designed and the teeth were splinted by fiber-reinforced composite (FRC) band. In another model, two implants were placed at the site of canine teeth and a six-unit FPD was designed over them. Models were transferred to finite element software and after... 

    Green composites in bone tissue engineering

    , Article Emergent Materials ; 2021 ; 25225731 (ISSN) Jouyandeh, M ; Vahabi, H ; Rabiee, N ; Rabiee, M ; Bagherzadeh, M ; Saeb, M. R ; Sharif University of Technology
    Springer Nature  2021
    Abstract
    Natural and biodegradable polymers are of particular interest as green sources with low-cost and environmentally friendly features, and have been widely used for polymer composite development. The term “Green Composites” refers to polymer/filler systems in which polymer, filler, or sometimes both components are green in view of sources from which they are yielded or their biodegradability. Natural fibers obtained from plants, animals, and/or geological processes are a big class of green sources widely applied in green composite development. There has also been continued research on recycling of green composite as well as developing hybrid systems for advanced applications. In view of their...