Loading...
Search for: in-vitro-models
0.004 seconds

    Gut-on-a-chip: Current progress and future opportunities

    , Article Biomaterials ; Volume 255 , 2020 Ashammakhi, N ; Nasiri, R ; Barros, N. R. D ; Tebon, P ; Thakor, J ; Goudie, M ; Shamloo, A ; Martin, M. G ; Khademhosseni, A ; Sharif University of Technology
    Elsevier Ltd  2020
    Abstract
    Organ-on-a-chip technology tries to mimic the complexity of native tissues in vitro. Important progress has recently been made in using this technology to study the gut with and without microbiota. These in vitro models can serve as an alternative to animal models for studying physiology, pathology, and pharmacology. While these models have greater physiological relevance than two-dimensional (2D) cell systems in vitro, endocrine and immunological functions in gut-on-a-chip models are still poorly represented. Furthermore, the construction of complex models, in which different cell types and structures interact, remains a challenge. Generally, gut-on-a-chip models have the potential to... 

    Effect of formulation factors on the bioactivity of glucose oxidase encapsulated chitosan-alginate microspheres: In vitro investigation and mathematical model prediction

    , Article Chemical Engineering Science ; Volume 125 , March , 2015 , Pages 4-12 ; 00092509 (ISSN) Abdekhodaie, M. J ; Cheng, J ; Wu, X. Y ; Sharif University of Technology
    Elsevier Ltd  2015
    Abstract
    Higher reactive oxygen species (ROS) levels in cancer cells than normal cells have long been recognized, which makes cancer cells more susceptible to excess ROS. Thus oxidation (also called pro-oxidant) therapy has been explored as new cancer therapy regimens. To produce additional ROS, e.g. H2O2 in situ within tumor, we encapsulated glucose oxidase in chitosan-coated alginate-calcium microspheres (GOX-MS) for locoregional treatment and demonstrated its efficacy against cancer cells in vitro and in vivo. Owing to the complex biological functions of ROS, the production rate and amount of H2O2 are critical to achieve therapeutic benefits without causing normal tissue toxicity. This work was... 

    PLA microspheres-embedded pva hydrogels prepared by gamma-irradiation and freeze-thaw methods as drug release carriers

    , Article International Journal of Polymeric Materials and Polymeric Biomaterials ; Volume 62, Issue 1 , 2013 , Pages 28-33 ; 00914037 (ISSN) Behnoodfar, D ; Dadbin, S ; Frounchi, M ; Sharif University of Technology
    2013
    Abstract
    A drug delivery system based on poly (vinyl alcohol) (PVA) hydrogels containing ibuprofen-loaded poly (lactic acid) (PLA) microspheres was developed to improve the release kinetics of this model drug. Gamma-irradiation and freeze-thawing were applied to prepare poly (vinyl alcohol) hydrogels. Properties and morphology of these composite hydrogels were investigated using FTIR, DSC, and SEM. In vitro release indicated that entrapment of the microspheres into the PVA hydrogels causes a reduction in both the release rate and the initial burst effect. PLA microspheres entrapped into the PVA hydrogels showed more suitable controlled release kinetics for drug delivery