Loading...
Search for: interphase-layers
0.005 seconds

    Hierarchical multiscale modeling of nanotube-reinforced polymer composites

    , Article International Journal for Multiscale Computational Engineering ; Volume 7, Issue 5 , 2009 , Pages 395-408 ; 15431649 (ISSN) Ghanbari, J ; Naghdabad, R ; Sharif University of Technology
    2009
    Abstract
    A finite element-based hierarchical multiscale modeling scheme is presented and used for the analysis of nanotube-reinforced polymer composites. The scheme presented here consists of micro- and macroscale boundary value problems linked together using a computational homogenization scheme. Using the presented hierarchical multiscale scheme, we have studied nanotube-reinforced polymer composites, and the elastic properties are determined. Using different representative volume elements (RVEs) representing different volume fractions of aligned nanotubes, the effect of the nanotube volume fraction and the existence of an interphase layer on the effective elastic modulus of the nanocomposite are... 

    Investigation of the interphase effects on the mechanical behavior of carbon nanotube polymer composites by multiscale modeling

    , Article Journal of Applied Polymer Science ; Volume 117, Issue 1 , March , 2010 , Pages 361-367 ; 00218995 (ISSN) Montazeri, A ; Naghdabadi, R ; Sharif University of Technology
    2010
    Abstract
    In this article, a multiscale modeling procedure is implemented to study the effect of interphase on the Young's modulus of CNT/polymer composites. For this purpose, a three-phase RVE is introduced which consists of three components, i.e., a carbon nanotube, an interphase layer, and an outer polymer matrix. The nanotube is modeled at the atomistic scale using molecular structural mechanics. Moreover, three-dimensional elements are employed to model the interphase layer and polymer matrix. The nanotube and polymer matrix are assumed to be bonded by van der Waals interactions based on the Lennard-Jones potential at the interface. Using this Molecular Structural Mechanics/Finite Element... 

    Investigating the effect of carbon nanotube defects on the column and shell buckling of carbon nanotube-polymer composites using multiscale modeling

    , Article International Journal for Multiscale Computational Engineering ; Volume 7, Issue 5 , 2009 , Pages 431-444 ; 15431649 (ISSN) Montazeri, A ; Naghdabadi, R ; Sharif University of Technology
    2009
    Abstract
    Carbon nanotube (CNT)-reinforced polymer composites have attracted great attention due to their exceptionally high strength. Their high strength can be affected by the presence of defects in the nanotubes used as reinforcements in practical nanocomposites. In this article, a new three-phase molecular structural mechanics/finite element (MSM/FE) multiscale model is used to study the effect of CNT vacancy defects on the stability of single-wall (SW) CNT-polymer composites. The nanotube is modeled at the atomistic scale using MSM, whereas the interphase layer and polymer matrix are analyzed by the FE method. The nanotube and polymer matrix are assumed to be bonded by van der Waals interactions... 

    Insights into the efficient roles of solid electrolyte interphase derived from vinylene carbonate additive in rechargeable batteries

    , Article Journal of Electroanalytical Chemistry ; Volume 909 , 2022 ; 15726657 (ISSN) Mosallanejad, B ; Sadeghi Malek, S ; Ershadi, M ; Sharifi, H ; Ahmadi Daryakenari, A ; Boorboor Ajdari, F ; Ramakrishna, S ; Sharif University of Technology
    Elsevier B.V  2022
    Abstract
    Formation of unstable solid electrolyte interphase (SEI) layers lacking of thermal stability in non-aqueous electrolytes of rechargeable batteries is the main bottleneck for their long-life cycling, especially at elevated temperatures. Inclusion of a small dose of functional electrolyte additives into the batteries' electrolyte can be highly beneficial to surmount this issue. Of these additives, vinylene carbonate (VC) has drawn particular attention thanks to its high ability to build protective layers at anodes showing good integrity and outstanding thermal stability. In addition to its primary roles in present-day lithium-ion batteries (LIBs), VC additive has also been examined in other... 

    Exact diffusion-induced elastic fields of a spherical core-shell nano-electrode li-ion battery via spectral theory

    , Article Journal of the Electrochemical Society ; Volume 167, Issue 13 , 2020 Shodja, H. M ; Shahryari, B ; Azizi, P ; Roumi, F ; Sharif University of Technology
    IOP Publishing Ltd  2020
    Abstract
    In Li-ion batteries the interface between the nano-size spherical core graphite and its surrounding solid electrolyte interphase (SEI) layer, just inside SEI is susceptible to damage. Thus, accurate determination of the associated elastic fields is one of the challenges in optimizing the lifetime and capacity of Li-ion batteries. The required precision is achieved by considering the core graphite which belongs to the crystal class D6h as homogeneous spherically isotropic and SEI layer as functionally graded (FG) isotropic material. Moreover, to account for the surface/interface effects appropriately the core-shell nano-structure subjected to the diffusion-induced time-dependent nonuniform...