Loading...
Search for: ionic-strength
0.007 seconds
Total 63 records

    Investigating the effects of pH, surfactant and ionic strength on the stability of alumina/water nanofluids using DLVO theory

    , Article Journal of Thermal Analysis and Calorimetry ; 2018 ; 13886150 (ISSN) Zareei, M ; Yoozbashizadeh, H ; Madaah Hosseini, H. R ; Sharif University of Technology
    Springer Netherlands  2018
    Abstract
    Alumina nanofluids are one of the most useful nanofluids. In order to evaluate the colloidal behavior of nanoparticles in alumina/water nanofluid, the influence of effective factors such as pH, ionic strength and surfactants, was studied. Zeta potential, particle size and turbidity change of each nanofluid was investigated. According to the results for 0.05, 0.1 and 0.2 mass% nanofluid, point of zero charge was obtained at pH values of 9.5, 10.2 and 10.5, respectively. The highest nanofluid stability occurred at pH 4 and its lowest was at pH 10. The anionic surfactant had a greater effect on the stability in compared with cationic and nonionic surfactants. By increasing in ionic strength,... 

    The effect of pH and ionic strength on the transport of alumina nanofluids in water-saturated porous media: Experimental and modeling study

    , Article Journal of Thermal Analysis and Calorimetry ; Volume 137, Issue 4 , 2019 , Pages 1169-1179 ; 13886150 (ISSN) Zareei, M ; Yoozbashizadeh, H ; Madaah Hosseini, H. R ; Sharif University of Technology
    Springer Netherlands  2019
    Abstract
    Alumina nanofluids are one of the most useful nanofluids, especially for increasing the thermal conductivity. Due to importance of porous media in the improvement of heat transfer, this study investigates the transport and retention of gamma alumina/water nanofluid in the water-saturated porous media. For this purpose, alumina nanofluids were introduced to the porous media consisting of water-saturated glass beads possessing various pH values (4, 7 and 10) and different ionic strengths (0.001 M of KCl, CaCl2, AlCl3, K2SO4, CaSO4, Al2(SO4)3, K2CO3 and CaCO3). Then the break through curve of each experiment was drawn and modeled by combining classical filtration theory with... 

    Investigating the effects of pH, surfactant and ionic strength on the stability of alumina/water nanofluids using DLVO theory

    , Article Journal of Thermal Analysis and Calorimetry ; Volume 135, Issue 2 , 2019 , Pages 1185-1196 ; 13886150 (ISSN) Zareei, M ; Yoozbashizadeh, H ; Madaah Hosseini, H. R ; Sharif University of Technology
    Springer Netherlands  2019
    Abstract
    Alumina nanofluids are one of the most useful nanofluids. In order to evaluate the colloidal behavior of nanoparticles in alumina/water nanofluid, the influence of effective factors such as pH, ionic strength and surfactants, was studied. Zeta potential, particle size and turbidity change of each nanofluid was investigated. According to the results for 0.05, 0.1 and 0.2 mass% nanofluid, point of zero charge was obtained at pH values of 9.5, 10.2 and 10.5, respectively. The highest nanofluid stability occurred at pH 4 and its lowest was at pH 10. The anionic surfactant had a greater effect on the stability in compared with cationic and nonionic surfactants. By increasing in ionic strength,... 

    Relative and interactive effects of fluid's physicochemical characteristics on the incipient motion of a granular particle under laminar flow condition

    , Article Journal of Hydraulic Engineering ; Volume 144, Issue 5 , 2018 ; 07339429 (ISSN) Xiao, M ; Gholizadeh Vayghan, A ; Adams, B. T ; Rajabipour, F ; Sharif University of Technology
    American Society of Civil Engineers (ASCE)  2018
    Abstract
    This paper presents an experimental research for studying the relative and interactive effects of three physicochemical fluid characteristics (viscosity, pH, and ionic strength) on the incipient motion of a granular particle under laminar flow condition. Critical flow velocity for particle's incipient motion, an important factor for evaluating flow-induced soil erosion, was used to quantify the relative erosive capacity of the test fluids. Response surface methodology (RSM), a statistical design of experiments, was used to design and implement 20 test fluids with various levels of the three fluid characteristics. Incipient motion of a highly spherical glass bead positioned atop a specially... 

    Investigation of rock and fluid interactions during engineered water flooding in dolomite reservoir rocks

    , Article Energy Sources, Part A: Recovery, Utilization and Environmental Effects ; 2020 Safavi, M. S ; Masihi, M ; Safekordi, A. A ; Ayatollahi, S ; Sadeghnejad, S ; Sharif University of Technology
    Taylor and Francis Inc  2020
    Abstract
    Engineered water (EW) flooding is one of the enhanced oil recovery (EOR) techniques in carbonate reservoirs. In this method, the wettability of reservoir rock is altered by controlling the amount of various ions in the injected brine. The thermodynamics of wettability is related to the surface interactions and stability of water film on a rock surface. It can be identified by calculating disjoining pressure isotherms. In this study, core flooding tests, contact angle and zeta potential measurements along with the disjoining pressure isotherm calculation by the DLVO theory were used to investigate the wettability alteration of dolomite rock. Four brines include reservoir formation water... 

    Electrospun decyl-3-methylimidazolium mono bromate/polyamide nanofibers as solid-phase microextraction coating

    , Article Journal of Chromatography A ; Volume 1516 , 2017 , Pages 35-41 ; 00219673 (ISSN) Roostaie, A ; Rastegar, S ; Najarzadegan, H ; Ehteshami, S ; Sharif University of Technology
    Abstract
    In the current study, electrospun-based ionic liquid (IL) doped polyamide (PA) nanofibers were prepared and used as the coating material of solid phase microextration device in the fiber geometry. Addition of IL, decyl-3-methylimidazolium mono bromate, increased the conductivity of the PA solution facilitating the electrospining process. The scanning electron microscopy images of decyl-3-methylimidazolium mono bromated/polyamide nanofibers showed the decreased diameter of the nanofibers in the range of 35–160 nm compared to the PA nanofiber. The factors affecting the structure of nanofibers (e.g. ratio of decyl-3-methylimidazolium mono bromate to PA, coating time and applied voltage) were... 

    Wettability alteration in carbonates during "Smart Waterflood": Underling mechanisms and the effect of individual ions

    , Article Colloids and Surfaces A: Physicochemical and Engineering Aspects ; Volume 487 , 2015 , Pages 142-153 ; 09277757 (ISSN) Rashid, S ; Mousapour, M. S ; Ayatollahi, S ; Vossoughi, M ; Beigy, A. H ; Sharif University of Technology
    Elsevier  2015
    Abstract
    There are increasing evidences that adjusting the chemistry of the injecting water improves the oil recovery efficiency. However, the underlying mechanisms for this technique which is referred to as "smart waterflood" have not yet been thoroughly understood. It is needed to explore the role of individual ions through set of different tests, to find the right mechanisms behind "smart waterflood". This study is focused on the fluid/solid (carbonate) interactions through systematic wettability measurement. Contact angle measurements accompanied by spontaneous imbibition tests were employed to determine the role of individual monovalent and divalent ions in wettability alteration process by... 

    Foam stability and foam-oil interactions

    , Article Petroleum Science and Technology ; Vol. 32, issue. 15 , May , 2014 , p. 1843-1850 ; ISSN: 10916466 Rashed Rohani, M ; Ghotbi, C ; Badakhshan, A ; Sharif University of Technology
    Abstract
    Gas injection into reservoirs can be used to increase oil recovery. However, reservoir heterogeneity and high gas mobility reduce sweep efficiency and decrease recovery. Using foam can reduce gas mobility and therefore increase sweep efficiency. Foam is thermodynamically unstable, so it is important to predict the foam stability. In order to understand the influence of oil presence on foam stability, static experiments performed on foam by varying the type and amount of added oil and molecular weight of added alkane. Also static foam properties have been investigated by varying the surfactant concentration, ionic strength, composition of different salts in the sample, and addition of polymer... 

    Synthesis and evaluation of pH and thermosensitive pectin-based superabsorbent hydrogel for oral drug delivery systems

    , Article Starch/Staerke ; Volume 61, Issue 3-4 , 2009 , Pages 161-172 ; 00389056 (ISSN) Pourjavadi, A ; Barzegar, S ; Sharif University of Technology
    2009
    Abstract
    The purpose of this study was to produce intelligent pectin-based superabsorbent polymers (SAP) to be used as pH- and thermosensitive carriers for the controlled delivery of non-steroidal anti-inflammatory drugs (NSAIDs). The superabsorbent formation was confirmed by Fourier transform infrared spectroscopic (FT-IR) and scanning electron microscopy (SEM). The effects of pH, ionic strength, temperature, porosity, particle size and levels of loaded drug on drug release profile in various surrounding media were investigated. Each sample was well characterized through swelling studies. The molecular weight between crosslinks (M̄C), crosslinking density (ve) polymer-solvent interaction parameter... 

    Multi-stimuli-responsive hydrogels and their medical applications

    , Article New Journal of Chemistry ; Volume 45, Issue 35 , 2021 , Pages 15705-15717 ; 11440546 (ISSN) Pourjavadi, A ; Heydarpour, R ; Tehrani, Z. M ; Sharif University of Technology
    Royal Society of Chemistry  2021
    Abstract
    The functionality of multi-stimuli-responsive hydrogels in physiological states is the reason for the increased attention of hydrogels nowadays. Multi-stimuli-responsive hydrogels exhibit tunable changes in swelling or mechanical properties in response to predetermined combinations of stimuli such as pH, temperature, ionic strength, electric field, magnetic field, light, chemical triggers, enzyme concentration, redox species, reactive oxygen species (ROS), and glucose levels. This review summarizes the recent advances in multi-stimuli-responsive hydrogels used in medical approaches. The first part of the review highlights the medical applications of polymer-based and supramolecular hydrogels... 

    Partially hydrolyzed crosslinked alginate-graff-polymethacrylamide as a novel biopolymer-based superabsorbent hydrogel having pH-responsive properties

    , Article Macromolecular Research ; Volume 13, Issue 1 , 2005 , Pages 45-53 ; 15985032 (ISSN) Pourjavadi, A ; Amini Fazl, M. S ; Hosseinzadeh, H ; Sharif University of Technology
    Polymer Society of Korea  2005
    Abstract
    In this study, a series of highly swelling hydrogels based on sodium alginate (NaAlg) and polymethacrylamide (PMAM) was prepared through free radical polymerization. The graft copolymerization reaction was performed in a homogeneous medium and in the presence of ammonium persulfate (APS) as an initiator and N,N'-methylenebisacrylamide (MBA) as a crosslinker. The crosslinked graft copolymer, alginate-graft-polymethacrylamide (Alg-g-PMAM), was then partially hydrolyzed by NaOH solution to yield a hydrogel, hydrolyzed alginate-graft-polymethacrylamide (H-Alg-g-PMAM). During alkaline hydrolysis, the carboxamide groups of Alg-g-PMAM were converted into hydrophilic carboxylate anions. Either the... 

    The impact of the electrical behavior of oil-brine-rock interfaces on the ionic transport rate in a thin film, hydrodynamic pressure, and low salinity waterflooding effect

    , Article Colloids and Surfaces A: Physicochemical and Engineering Aspects ; Volume 620 , 2021 ; 09277757 (ISSN) Pourakaberian, A ; Mahani, H ; Niasar, V ; Sharif University of Technology
    Elsevier B.V  2021
    Abstract
    Wettability alteration is the principal low-salinity-effect (LSE) in many oil-brine-rock (OBR) systems. Our recent experimental results have demonstrated that wettability alteration by low salinity is slow. It is expected that the electrical behavior of oil/brine and rock/brine interfaces and the water film geometry control both the transient hydrodynamic pressure, and the time-scale of ionic transport in the film, thus the kinetics and degree of wettability alteration. In this paper, the electro-diffusion process induced by the imposed ionic strength gradient is simulated by solving Poisson-Nernst-Planck equations in a water film bound between two charged surfaces, using a finite... 

    Modeling of aqueous biomolecules using a new free-volume group contribution model

    , Article Industrial and Engineering Chemistry Research ; Volume 48, Issue 8 , 2009 , Pages 4109-4118 ; 08885885 (ISSN) Pazuki, G. R ; Taghikhani, V ; Vossoughi, M ; Sharif University of Technology
    2009
    Abstract
    In this article, a new group contribution model is suggested for obtaining the thermodynamic properties of biomolecules in aqueous solutions. Accordingly, a Freed-FV model has been applied for the combinatorial free-volume term. The activity coefficients, solubilities, densities, and vapor pressures of amino acids and simple peptides in aqueous solutions were correlated, using the proposed group contribution model. Group interaction parameters of the proposed model were obtained by use of experimental data from amino acids available in the literature. The results demonstrate that the group contribution model can accurately correlate activity coefficient, solubility, density, and vapor... 

    Experimental investigation of dynamic asphaltene adsorption on calcite packs: The impact of single and mixed-salt brine films

    , Article Canadian Journal of Chemical Engineering ; Volume 97, Issue 7 , 2019 , Pages 2028-2038 ; 00084034 (ISSN) Monjezi, R ; Ghotbi, C ; Jafari Behbahani, T ; Bakhshi, P ; Sharif University of Technology
    Wiley-Liss Inc  2019
    Abstract
    In this study, the dynamic adsorption of asphaltene on a calcite surface is investigated. This study investigates the effect of mixed-salt brines on asphaltene adsorption. The results of this work can facilitate the understanding of the complex wettability behaviour of carbonate reservoirs. All experiments were performed in porous media, which were sand-packs filled with calcite powder, to study the influence of the type and concentration of salt on adsorption. The experiments were conducted with asphaltene concentration of 500 mg/L for brines of NaCl, Na2SO4, and a mixture of the two at various ionic strengths. In addition, two tests were performed with an asphaltene concentration of 2000... 

    Experimental study on the influence of initial pH, ionic strength, and temperature on the selective adsorption of dyes onto nanodiamonds

    , Article Journal of Chemical and Engineering Data ; Volume 64, Issue 4 , 2019 , Pages 1508-1514 ; 00219568 (ISSN) ; https://pubs.acs.org/doi/abs/10.1021/acs.jced.8b01091 Molavi, H ; Pourghaderi, A ; Shojaei, A ; Sharif University of Technology
    American Chemical Society  2019
    Abstract
    In the current work, the performance of untreated nanodiamonds (UNDs) and thermally oxidized nanodiamonds (ONDs), as adsorbents for selective adsorption of methylene blue (MB) and methyl orange (MO) from aqueous media, was examined. The adsorption isotherm, initial pH, ionic strength, and thermodynamic study were investigated in batch experiments. The equilibrium adsorption data were analyzed by Langmuir and Freundlich isotherm models, which indicated that the isotherms were well fitted with the Langmuir model for both dyes. Thermodynamic parameters indicated that the adsorption operation was a feasible, spontaneous, and physisorption process in experimental conditions. Meanwhile, the... 

    Experimental study on the influence of initial pH, Ionic strength, and temperature on the selective adsorption of dyes onto nanodiamonds

    , Article Journal of Chemical and Engineering Data ; 2019 ; 00219568 (ISSN) Molavi, H ; Pourghaderi, A ; Shojaei, A ; Sharif University of Technology
    American Chemical Society  2019
    Abstract
    In the current work, the performance of untreated nanodiamonds (UNDs) and thermally oxidized nanodiamonds (ONDs), as adsorbents for selective adsorption of methylene blue (MB) and methyl orange (MO) from aqueous media, was examined. The adsorption isotherm, initial pH, ionic strength, and thermodynamic study were investigated in batch experiments. The equilibrium adsorption data were analyzed by Langmuir and Freundlich isotherm models, which indicated that the isotherms were well fitted with the Langmuir model for both dyes. Thermodynamic parameters indicated that the adsorption operation was a feasible, spontaneous, and physisorption process in experimental conditions. Meanwhile, the... 

    Experimental study on the influence of initial pH, ionic strength, and temperature on the selective adsorption of dyes onto nanodiamonds

    , Article Journal of Chemical and Engineering Data ; 2019 ; 00219568 (ISSN) Molavi, H ; Pourghaderi, A ; Shojaei, A ; Sharif University of Technology
    American Chemical Society  2019
    Abstract
    In the current work, the performance of untreated nanodiamonds (UNDs) and thermally oxidized nanodiamonds (ONDs), as adsorbents for selective adsorption of methylene blue (MB) and methyl orange (MO) from aqueous media, was examined. The adsorption isotherm, initial pH, ionic strength, and thermodynamic study were investigated in batch experiments. The equilibrium adsorption data were analyzed by Langmuir and Freundlich isotherm models, which indicated that the isotherms were well fitted with the Langmuir model for both dyes. Thermodynamic parameters indicated that the adsorption operation was a feasible, spontaneous, and physisorption process in experimental conditions. Meanwhile, the... 

    Ultrafast and simultaneous removal of anionic and cationic dyes by nanodiamond/UiO-66 hybrid nanocomposite

    , Article Chemosphere ; Volume 247 , May , 2020 Molavi, H ; Neshastehgar, M ; Shojaei, A ; Ghashghaeinejad, H ; Sharif University of Technology
    Elsevier Ltd  2020
    Abstract
    In this research, UiO-66 and its composite nanoparticles with thermally oxidized nanodiamond (OND) were synthesized via a simple solvothermal method and utilized as solid adsorbent for the removal of anionic methyl red (MR) dye and cationic malachite green (MG) dye from contaminated water. The synthesized adsorbents were analyzed by Fourier transform infrared spectroscopy (FTIR), X-ray diffraction (XRD), field emission scanning electron microscopy (FESEM), thermogravimetric analysis (TGA), N2 adsorption–desorption, and zeta potential analyzer. The influences of various factors such as initial concentrations of the dyes, adsorption process time, solution pH, solution temperature and ionic... 

    Dissociation of polar oil components in low salinity water and its impact on crude oil–brine interfacial interactions and physical properties

    , Article Petroleum Science ; 2018 ; 16725107 (ISSN) Mokhtari, R ; Ayatollahi, S ; Sharif University of Technology
    China University of Petroleum Beijing  2018
    Abstract
    Despite many efforts into the study of fluids interaction in low salinity water flooding, they are not probing the basics of transport phenomena between the involved phases. This work is aimed to bring new understanding of fluid–fluid interaction during low salinity water flooding through a series of organized experiments in which a crude oil sample with known properties was kept in contact with different brine solutions of various ionic strengths. Measuring brine pH, conductivity and crude oil viscosity and density for a period of 45 days illustrates the strong effect of the contact time and ionic strength on the dissociation of polar components and physical properties of the crude oil and... 

    Dissociation of polar oil components in low salinity water and its impact on crude oil–brine interfacial interactions and physical properties

    , Article Petroleum Science ; Volume 16, Issue 2 , 2019 , Pages 328-343 ; 16725107 (ISSN) Mokhtari, R ; Ayatollahi, S ; Sharif University of Technology
    China University of Petroleum Beijing  2019
    Abstract
    Despite many efforts into the study of fluids interaction in low salinity water flooding, they are not probing the basics of transport phenomena between the involved phases. This work is aimed to bring new understanding of fluid–fluid interaction during low salinity water flooding through a series of organized experiments in which a crude oil sample with known properties was kept in contact with different brine solutions of various ionic strengths. Measuring brine pH, conductivity and crude oil viscosity and density for a period of 45 days illustrates the strong effect of the contact time and ionic strength on the dissociation of polar components and physical properties of the crude oil and...