Loading...
Search for: iteration-method
0.007 seconds
Total 327 records

    Well Placement optimization using hybrid optimization technique combined with fuzzy inference system

    , Article Petroleum Science and Technology ; Vol. 31, issue. 5 , Dec , 2009 , p. 481-491 ; ISSN: 10916466 Darabi, H ; Masihi, M ; Sharif University of Technology
    Abstract
    Decision on the location of new wells through infill drilling projects is a complex problem that depends on the reservoir rock and fluid properties, well and surface facilities specifications, and economic measures. Conventional approach to address this is a direct optimization that uses the numerical flow simulation. However, this is computationally very extensive. In this study the authors use a hybrid genetic algorithm (HGA) optimization technique based on the genetic algorithm (GA) with helper functions based on the polytope algorithm and the neural network. This hybridization introduces hill-climbing into the stochastic search and makes use of proxies created and calibrated iteratively... 

    Iterative coupled experimental-numerical evaluation of dispersivity in fractured porous media using micromodel system

    , Article 73rd European Association of Geoscientists and Engineers Conference and Exhibition 2011: Unconventional Resources and the Role of Technology. Incorporating SPE EUROPEC 2011 ; Vol. 4, issue , 2011 , p. 2461-2466 Saidian, M ; Ghazanfari, M. H ; Masihi, M ; Kharrat, R ; Kianinejad, A ; Sharif University of Technology
    Abstract
    In this study a new iterative algorithm is developed to evaluate dispersivity in fracture and matrix, distinctly. The novelty of proposed algorithm is using mathematical model of solute transport in fractured porous media coupled with experimental data iteratively. A fractured glass micromodel has been designed to visualize the interaction between fracture and matrix during displacement of n-Decane by n-Octane at constant rate. The similarity between numerical and experimental model has been enhanced by reducing the assumptions which were applied in previous related studies. The iteration is performed on velocity components of solute transport and longitudinal as well as transversal... 

    A high-order compact finite-difference lattice Boltzmann method for simulation of steady and unsteady incompressible flows

    , Article International Journal for Numerical Methods in Fluids ; Vol. 75, Issue. 10 , 2014 , Pages 713-746 ; ISSN: 02712091 Hejranfar, K ; Ezzatneshan, E ; Sharif University of Technology
    Abstract
    A high-order compact finite-difference lattice Boltzmann method (CFDLBM) is proposed and applied to accurately compute steady and unsteady incompressible flows. Herein, the spatial derivatives in the lattice Boltzmann equation are discretized by using the fourth-order compact FD scheme, and the temporal term is discretized with the fourth-order Runge-Kutta scheme to provide an accurate and efficient incompressible flow solver. A high-order spectral-type low-pass compact filter is used to stabilize the numerical solution. An iterative initialization procedure is presented and applied to generate consistent initial conditions for the simulation of unsteady flows. A sensitivity study is also... 

    Learning overcomplete dictionaries based on atom-by-atom updating

    , Article IEEE Transactions on Signal Processing ; Volume 62, Issue 4 , 15 February , 2014 , Pages 883-891 ; ISSN: 1053587X Sadeghi, M ; Babaie Zadeh, M ; Jutten, C ; Sharif University of Technology
    Abstract
    A dictionary learning algorithm learns a set of atoms from some training signals in such a way that each signal can be approximated as a linear combination of only a few atoms. Most dictionary learning algorithms use a two-stage iterative procedure. The first stage is to sparsely approximate the training signals over the current dictionary. The second stage is the update of the dictionary. In this paper we develop some atom-by-atom dictionary learning algorithms, which update the atoms sequentially. Specifically, we propose an efficient alternative to the well-known K-SVD algorithm, and show by various experiments that the proposed algorithm is much faster than K-SVD while its results are... 

    Analysis of large amplitude free vibrations of clamped tapered beams on a nonlinear elastic foundation

    , Article Applied Mathematical Modelling ; Volume 38, Issue 3 , 1 February , 2014 , Pages 1176-1186 ; ISSN: 0307904X Baghani, M ; Mazaheri, H ; Salarieh, H ; Sharif University of Technology
    Abstract
    The purpose of this paper is to present efficient and accurate analytical expressions for large amplitude free vibration analysis of single and double tapered beams on elastic foundation. Geometric nonlinearity is considered using the condition of inextensibility of neutral axis. Moreover, the elastic foundation consists of a linear and cubic nonlinear parts together with a shearing layer. The nonlinear governing equation is solved by employing the variational iteration method (VIM). This study shows that the second-order approximation of the VIM leads to highly accurate solutions which are valid for a wide range of vibration amplitudes. The effects of different parameters on the nonlinear... 

    An artificial neural network meta-model for constrained simulation optimization

    , Article Journal of the Operational Research Society ; Vol. 65, issue. 8 , August , 2014 , pp. 1232-1244 ; ISSN: 01605682 Mohammad Nezhad, A ; Mahlooji, H ; Sharif University of Technology
    Abstract
    This paper presents artificial neural network (ANN) meta-models for expensive continuous simulation optimization (SO) with stochastic constraints. These meta-models are used within a sequential experimental design to approximate the objective function and the stochastic constraints. To capture the non-linear nature of the ANN, the SO problem is iteratively approximated via non-linear programming problems whose (near) optimal solutions obtain estimates of the global optima. Following the optimization step, a cutting plane-relaxation scheme is invoked to drop uninformative estimates of the global optima from the experimental design. This approximation is iterated until a terminating condition... 

    Finite volume coupling strategies for the solution of a Biot consolidation model

    , Article Computers and Geotechnics ; Vol. 55, issue , January , 2014 , p. 494-505 ; ISSN: 0266352X Asadi, R ; Ataie-Ashtiani, B ; Simmons, C. T ; Sharif University of Technology
    Abstract
    In this paper a finite volume (FV) numerical method is implemented to solve a Biot consolidation model with discontinuous coefficients. Our studies show that the FV scheme leads to a locally mass conservative approach which removes pressure oscillations especially along the interface between materials with different properties and yields higher accuracy for the flow and mechanics parameters. Then this numerical discretization is utilized to investigate different sequential strategies with various degrees of coupling including: iteratively, explicitly and loosely coupled methods. A comprehensive study is performed on the stability, accuracy and rate of convergence of all of these sequential... 

    Microwave imaging based on compressed sensing using adaptive thresholding

    , Article 8th European Conference on Antennas and Propagation, EuCAP 2014 ; 2014 , pp. 699-701 ; ISBN: 9788890701849 Azghani, M ; Kosmas, P ; Marvasti, F ; Sharif University of Technology
    Abstract
    We propose to use a compressed sensing recovery method called IMATCS for improving the resolution in microwave imaging applications. The electromagnetic inverse scattering problem is solved using the Distorted Born Iterative Method combined with the IMATCS algorithm. This method manages to recover small targets in cases where traditional DBIM approaches fail. Furthermore, by applying an L2-based approach to regularize the sparse recovery algorithm, we improve the algorithm's robustness and demonstrate its ability to image complex breast structures. Although our simulation scenarios do not fully represent experimental or clinical data, our results suggest that the proposed algorithm may be... 

    Nonlocal and strain gradient based model for electrostatically actuated silicon nano-beams

    , Article Microsystem Technologies ; Vol. 21, Issue 2 , 2014 , pp. 457-464 ; Online ISSN: 1432-1858 Miandoab, E. M ; Yousefi-Koma, A ; Pishkenari, H. N ; Sharif University of Technology
    Abstract
    Conventional continuum theory does not account for contributions from length scale effects which are important in modeling of nano-beams. Failure to include size-dependent contributions can lead to underestimates of deflection, stresses, and pull-in voltage of electrostatic actuated micro and nano-beams. This research aims to use nonlocal and strain gradient elasticity theories to study the static behavior of electrically actuated micro- and nano-beams. To solve the boundary value nonlinear differential equations, analogue equation and Gauss–Seidel iteration methods are used. Both clamped-free and clamped–clamped micro- and nano-beams under electrostatical actuation are considered where... 

    A numerical contact algorithm in saturated porous media with the extended finite element method

    , Article Computational Mechanics ; Vol. 54, issue. 5 , 2014 , pp. 1089-1110 ; ISSN: 01787675 Khoei, A. R ; Vahab, M ; Sharif University of Technology
    Abstract
    In this paper, a coupled hydro-mechanical formulation is developed for deformable porous media subjected to crack interfaces in the framework of extended finite element method. Governing equations of the porous medium consist of the momentum balance of the bulk together with the momentum balance and continuity equations of the fluid phase, known as [InlineEquation not available: see fulltext.] formulation. The discontinuity in fractured porous medium is modeled for both opening and closing modes that results in the fluid flow within the fracture, and/or contact behavior at the crack edges. The fluid flow through the fracture is assumed to be viscous and is modeled by employing the Darcy law... 

    Robust optimal control for large-scale systems with state delay

    , Article Transactions of the Institute of Measurement and Control ; Vol. 36, Issue. 4 , June , 2014 , pp. 551-558 ; ISSN: 01423312 Rahmani, M ; Sadati, N ; Sharif University of Technology
    Abstract
    Optimal control of large-scale uncertain dynamic systems with time delays in states is considered in this paper. For this purpose, a two-level strategy is proposed to decompose the large-scale system into several interconnected subsystems at the first level. Then optimal control inputs are obtained by minimization of convex performance indices in presence of uncertainties, in the form of states and interactions feedback. The solution is achieved by bounded data uncertainty problems, where the uncertainties are only needed to be bounded and it is not required to satisfy the so-called 'matching conditions'. At the second level, a simple substitution-type interaction prediction method is used... 

    Alternating active-phase algorithm for multimaterial topology optimization problems: A 115-line MATLAB implementation

    , Article Structural and Multidisciplinary Optimization ; Vol. 49, issue. 4 , April , 2014 , p. 621-642 Tavakoli, R ; Mohseni, S. M ; Sharif University of Technology
    Abstract
    A new algorithm for the solution of multimaterial topology optimization problems is introduced in the present study. The presented method is based on the splitting of a multiphase topology optimization problem into a series of binary phase topology optimization sub-problems which are solved partially, in a sequential manner, using a traditional binary phase topology optimization solver; internal solver. The coupling between these incomplete solutions is ensured using an outer iteration strategy based on the block coordinate descend method. The presented algorithm provides a general framework to extend the traditional binary phase topology optimization solvers for the solution of multiphase... 

    An energy-efficient multi-sensor scheduling mechanism with QoS support for WBANs

    , Article IEEE Wireless Communications and Networking Conference, WCNC ; 2014 , pp. 1703-1708 ; ISSN: 15253511 Omidvar, H ; Ashtiani, F ; Javidi, T ; Nasiri-Kenari, M ; Vahdat, B. V ; Sharif University of Technology
    Abstract
    In wireless body area networks (WBANs) it is necessary to devise an energy-efficient MAC scheduling mechanism which is capable of meeting strict QoS requirements. In this paper, special characteristics of WBAN channels, namely, the slow fading, the periodicity of fading, and the correlation among the channels have been exploited to formulate the sensor scheduling problem as a partially observable Markov decision problem (POMDP). Specific algorithms based on value iteration and pruning have been proposed in order to reduce the computational burden associated with the corresponding POMDP. The proposed scheduling mechanism is compared against a TDMA scheduling for a three-sensor network, and an... 

    On the contact mechanics of a rolling cylinder on a graded coating. Part 1: Analytical formulation

    , Article Mechanics of Materials ; Vol. 68, issue , 2014 , p. 207-216 Alinia, Y ; Guler, M. A ; Adibnazari, S ; Sharif University of Technology
    Abstract
    In this paper, the fully coupled rolling contact problem of a graded coating/substrate system under the action of a rigid cylinder is investigated. Using the singular integral equation approach, the governing equations of the rolling contact problem are constructed for all possible stick/slip regimes. Applying the Gauss-Chebyshev numerical integration method, the governing equations are converted to systems of algebraic equations. A new numerical algorithm is proposed to solve these systems of equations. Both the coupled and the uncoupled solutions to the problem are found through an implemented iterative procedure. In Part I of this paper, the analytical formulation of the rolling contact... 

    A mesh-independent finite element formulation for modeling crack growth in saturated porous media based on an enriched-FEM technique

    , Article International Journal of Fracture ; Vol. 188, issue. 1 , 2014 , p. 79-108 Khoei, A. R ; Vahab, M ; Haghighat, E ; Moallemi, S ; Sharif University of Technology
    Abstract
    In this paper, the crack growth simulation is presented in saturated porous media using the extended finite element method. The mass balance equation of fluid phase and the momentum balance of bulk and fluid phases are employed to obtain the fully coupled set of equations in the framework of u - p formulation. The fluid flow within the fracture is modeled using the Darcy law, in which the fracture permeability is assumed according to the well-known cubic law. The spatial discritization is performed using the extended finite element method, the time domain discritization is performed based on the generalized Newmark scheme, and the non-linear system of equations is solved using the... 

    State estimation, positioning and anti-swing robust control of traveling crane-lifter system

    , Article Applied Mathematical Modelling ; March , 2015 ; 0307904X (ISSN) Moradi, H ; Vossoughi, G ; Sharif University of Technology
    Elsevier Inc  2015
    Abstract
    Under different loading conditions, the over-head cranes may experience a wide range of model parameters variation. A robust control strategy is developed to achieve the high positioning accuracy, short transportation time and suppression of swing angle for an uncertain over-head crane system. Over-head crane is modeled as a three degrees of freedom system and control problem is investigated for two cases: a system with a single control input (the force on trolley) and a system with two control inputs (the force on trolley and the torque on lifter). Regulator and observer systems are designed. To achieve the tracking objectives, an optimal robust controller is designed based on μ-synthesis... 

    Peculiar transport properties in Z-shaped graphene nanoribbons: A nanoscale NOR gate

    , Article Thin Solid Films ; Volume 548 , 2013 , Pages 443-448 ; 00406090 (ISSN) Khoeini, F ; Khoeini, F ; Shokri, A ; Sharif University of Technology
    2013
    Abstract
    A nanoscale logic NOR gate has been theoretically designed by magnetic flux inputs in a Z-shaped graphene nanoribbon composed of an armchair ribbon device sandwiched between two semi-infinite metallic zigzag ribbon leads. The calculations are based on the tight-binding model and iterative Green's function method, in which the conductance as well as current-voltage characteristics of the nanosystem are calculated, numerically. We show that the current and conductance are highly sensitive to both the magnetic fluxes subject to the device and the size of the system. Our results may have important applications for building blocks in the nanoelectronic devices based on graphene nanoribbons  

    A novel rotor configuration for brushless doubly-fed induction generators

    , Article IET Electric Power Applications ; Volume 7, Issue 2 , 2013 , Pages 106-115 ; 17518660 (ISSN) Gorginpour, H ; Jandaghi, B ; Oraee, H ; Sharif University of Technology
    2013
    Abstract
    Brushless Doubly-Fed Induction Generator has attractive features to be the first choice in next generation of wind generators. However, its efficiency and power-to-weight ratio are slightly lower in comparison to induction machine with the same rating. Considerable part of these imperfections arises from the rotor design, which produces magnetic field with considerable undesirable spatial harmonics. This paper proposes a novel rotor configuration to reduce spatial harmonic distortion of air-gap magnetic field as well as improving some drawbacks of the conventional structure, including unequal magnitudes of rotor bar currents, teeth saturation at low average air gap magnetic fields, high core... 

    Throughput-memory footprint trade-off in synthesis of streaming software on embedded multiprocessors

    , Article Transactions on Embedded Computing Systems ; Volume 13, Issue 3 , December , 2013 ; 15399087 (ISSN) Hashemi, M ; Foroozannejad, M. H ; Ghiasi, S ; Sharif University of Technology
    2013
    Abstract
    We study the trade-off between throughput and memory footprint of embedded software that is synthesized from acyclic static dataflow (task graph) specifications targeting distributed memory multiprocessors. We identify iteration overlapping as a knob in the synthesis process by which one can trade application throughput for its memory requirement. Given an initial processor assignment and non-overlapped task schedule, we formally present underlying properties of the problem, such as constraints on a valid iteration overlapping, maximum possible throughput, and minimum memory footprint. Moreover, we develop an effective algorithm for generation of a rich set of design points that provide a... 

    Extended rank reduction formulas containing Wedderburn and Abaffy-Broyden-Spedicato rank reducing processes

    , Article Linear Algebra and Its Applications ; Volume 439, Issue 11 , 2013 , Pages 3318-3331 ; 00243795 (ISSN) Mahdavi Amiri, N ; Golpar Raboky, E ; Sharif University of Technology
    2013
    Abstract
    The Wedderburn rank reduction formula and the Abaffy-Broyden-Spedicato (ABS) algorithms are powerful methods for developing matrix factorizations and many fundamental numerical linear algebra processes such as Gram-Schmidt, conjugate direction and Lanczos methods. We present a rank reduction formula for transforming the rows and columns of A, extending the Wedderburn rank reduction formula and the ABS approach. By repeatedly applying the formula to reduce the rank, an extended rank reducing process is derived. The biconjugation process associated with the Wedderburn rank reduction process and the scaled extended ABS class of algorithms are shown to be in our proposed rank reducing process,...