Loading...
Search for: iterative-procedures
0.005 seconds

    Hydro-mechanical modeling of two-phase fluid flow in deforming, partially saturated porous media with propagating cohesive cracks using the extended finite element method

    , Article Computational Plasticity XI - Fundamentals and Applications, COMPLAS XI, 7 September 2011 through 9 September 2011 ; September , 2011 , Pages 1516-1527 ; 9788489925731 (ISBN) Mohammadnejad, T ; Khoei, A. R ; Sharif University of Technology
    Abstract
    In the present paper, a fully coupled numerical model is developed for the hydromechanical analysis of deforming, progressively fracturing porous media interacting with the flow of two immiscible, compressible wetting and non-wetting pore fluids. The governing equations involving the coupled two-phase fluid flow and deformation processes in partially saturated porous media containing cohesive cracks are derived within the framework of the generalized Biot theory. The displacement of the solid phase, the pressure of the wetting phase and the capillary pressure are taken as the primary unknowns of the three-phase formulation. A softening cohesive law is employed to describe the nonlinear... 

    A mesh-independent finite element formulation for modeling crack growth in saturated porous media based on an enriched-FEM technique

    , Article International Journal of Fracture ; Vol. 188, issue. 1 , 2014 , p. 79-108 Khoei, A. R ; Vahab, M ; Haghighat, E ; Moallemi, S ; Sharif University of Technology
    Abstract
    In this paper, the crack growth simulation is presented in saturated porous media using the extended finite element method. The mass balance equation of fluid phase and the momentum balance of bulk and fluid phases are employed to obtain the fully coupled set of equations in the framework of u - p formulation. The fluid flow within the fracture is modeled using the Darcy law, in which the fracture permeability is assumed according to the well-known cubic law. The spatial discritization is performed using the extended finite element method, the time domain discritization is performed based on the generalized Newmark scheme, and the non-linear system of equations is solved using the... 

    An iterative signal recovery technique capable of decreasing the lossy effects of codecs

    , Article 2007 IEEE International Conference on Telecommunications and Malaysia International Conference on Communications, ICT-MICC 2007, Penang, 14 May 2007 through 17 May 2007 ; February , 2007 , Pages 107-112 ; 1424410940 (ISBN); 9781424410941 (ISBN) Jahani Yekta, M. M ; Marvasti, F ; Sharif University of Technology
    2007
    Abstract
    In this paper applications of an iterative method in some signal recovery problems are introduced. It is proved that the distorting effect of linear operators can be removed completely using the iterative scheme. The inverse of monotonic functions can also be made indirectly by the method. A novel approach for separating the messages of different subscribers in a CDMA network will be proposed as well, relying on the recursive approach. It would be shown that Sigma Delta Modulated signals can be decoded via the iterative procedure. We will prove both analytically and with simulations that a broad class of nonlinear operators including speech and image codecs can be approximately inverted with... 

    True damping and frequency prediction for aeroelastic systems: The PP method

    , Article Journal of Fluids and Structures ; Volume 25, Issue 7 , 2009 , Pages 1177-1188 ; 08899746 (ISSN) Haddadpour, H ; Firouz Abadi, R. D ; Sharif University of Technology
    2009
    Abstract
    This paper presents a numerical scheme for stability analysis of the aeroelastic systems in the Laplace domain. The proposed technique, which is called the PP method, is proposed for when the aerodynamic model is represented in the Laplace domain and includes complicated transcendental expressions in terms of the Laplace variable. This method utilizes a matrix iterative procedure to find the eigenvalues of the system and generalizes the other methods such as the P and PK methods for prediction of the flutter conditions. The major advantage of this technique over the other approximate methods is true prediction of subcritical damping and frequency values of the aeroelastic modes. To examine... 

    On the contact mechanics of a rolling cylinder on a graded coating. Part 2: Numerical results

    , Article Mechanics of Materials ; Volume 66 , 2013 , Pages 134-159 ; 01676636 (ISSN) Guler, M. A ; Alinia, Y ; Adibnazari, S ; Sharif University of Technology
    2013
    Abstract
    The analytical formulation of the fully coupled and the uncoupled rolling contact mechanics problems for all possible stick/slip regimes are derived in Part I (Alinia et al., 2013). In this part, we focus on the numerical algorithm, the iteration procedure and the numerical results. The coupled and the uncoupled solutions corresponding to each of the assumed stick/slip regimes are provided. The uncoupled solution provides an acceptable approximation to the problem for small coefficient of friction values. However, for high values of the coefficient of friction the problem should be solved in fully coupled form. In addition, the effect of several parameters such as the stiffness ratio, the... 

    Computational zone adaptation strategy for unstructured grid users

    , Article 48th AIAA Aerospace Sciences Meeting Including the New Horizons Forum and Aerospace Exposition, 4 January 2010 through 7 January 2010, Orlando, FL ; 2010 ; 9781600867392 (ISBN) Fouladi, N ; Darbandi, M ; Schneider, G. E ; Sharif University of Technology
    2010
    Abstract
    This paper presents an advanced grid adaptation strategy to be used by unstructured grid users. The idea behind this strategy originates from the need for automatic control of computational grids during iterative procedures utilized by fluid flow solvers. This strategy eliminates unnecessary grid computations by dividing the unstructured grid into active and inactive zones automatically. The active zones are extended automatically in order to capture the propagation of disturbances in solution domain. In this work, we focus to solve the grid deformations which are imposed in some portions of the main body and are propagated into computational domain during the iterative solutions. To achieve... 

    Free vibrations of single-walled carbon nanotubes in the vicinity of a fully constrained graphene sheet

    , Article Computational Materials Science ; Volume 53, Issue 1 , 2012 , Pages 12-17 ; 09270256 (ISSN) Firouz Abadi, R. D ; Hosseinian, A. R ; Sharif University of Technology
    2012
    Abstract
    Carbon nanotubes (CNTs) have been recently taken into consideration as mechanical resonators of distinguished capabilities. This study aims at investigating the free vibration characteristics of a single-walled CNT in the vicinity of a fully constrained graphene sheet. Using a molecular structural mechanics model and considering nonlinear van-der-Waals interactions, the static deformation of the nanotube is obtained using an iterative procedure. Then, the governing equations of motion are linearized about the static equilibrium state and the natural frequencies are obtained. The molecular structural mechanics model is verified using established results in literature and then a survey is... 

    Chromosome image contrast enhancement using adaptive, iterative histogram matching

    , Article 2011 7th Iranian Conference on Machine Vision and Image Processing, MVIP 2011 - Proceedings, 16 November 2011 through 17 November 2011 ; 2011 ; 9781457715358 (ISBN) Ehsani, S. P ; Mousavi, H. S ; Khalaj, B. H ; Sharif University of Technology
    2011
    Abstract
    Vivid banding patterns in medical images of chromosomes are a vital feature for karyotyping and chromosome classification. The chromosome image quality may be degraded by many phenomenon such as staining, sample defectness and imaging conditions. Thus, an image enhancement processing algorithm is needed before classification of chromosomes. In this paper, we propose an adaptive and iterative histogram matching (AIHM) algorithm for chromosome contrast enhancement especially in banding patterns. The reference histogram, with which the initial image needs to be matched, is created based on some processes on the initial image histogram. Usage of raw information in the histogram of initial image... 

    Dynamic modeling and optimization of asphaltene deposition in reservoir rocks using genetic algorithm

    , Article 72nd European Association of Geoscientists and Engineers Conference and Exhibition 2010: A New Spring for Geoscience. Incorporating SPE EUROPEC 2010 ; Volume 6 , 2010 , Pages 4291-4295 ; 9781617386671 (ISBN) Bagheri, M. B ; Kharrat, R ; Hemmatfar, V ; Ghotbi, C ; Sharif University of Technology
    Society of Petroleum Engineers  2010
    Abstract
    Asphaltene deposition is a problematic challenge for oil production. Changes in key parameters like pressure and fluid composition during natural depletion and different gas injection scenarios may result in asphaltene precipitation and deposition. In this work, a model is developed by application of mass balance equations, momentum equation, asphaltene deposition and permeability reduction models. An algorithm is developed to perform iterative procedure to solve the numerical equations that contains highly coupled variables. Indeed, an equation is introduced to calculate the saturation of the precipitated asphaltene phase. Model parameters were determined by genetic algorithm which is a...