Loading...
Search for: kinematics
0.015 seconds
Total 346 records

    Swarm aggregation using emotional learning based intelligent controller

    , Article 2009 6th International Symposium on Mechatronics and its Applications ; 2009 , Article number 5164827 ; ISBN: 9781424434817 Etemadi, S ; Vatankhah, R ; Alasty, A ; Vossoughi, G ; Sharif University of Technology
    Abstract
    In this paper, we consider a control strategy of multi-robot systems, or simply, swarms, based on emotional control technique. First, we briefly discuss a "kinematic" swarm model in n-dimensional space introduced in an earlier paper. In that model, motion of every swarm member is governed by predefined inter-individual interactions. Limitations of every member's field of view are also considered in that model. After that, we consider a general model for vehicle dynamics of each swarm member, and use emotional control theory to force their motion to obey the dynamics of the kinematic model. Based on the kinematic model, stability (cohesion) analysis is performed and coordination controller.is... 

    Inverse and forward dynamics of N-3RPS manipulator with lockable joints

    , Article Robotica ; 2015 ; ISSN: 02635747 Taherifar, A ; Salarieh, H ; Alasty, A ; Honarvar, M ; Sharif University of Technology
    Abstract
    The N-3 Revolute-Prismatic-Spherical (N-3RPS) manipulator is a kind of serial-parallel manipulator and has higher stiffness and accuracy compared with serial mechanisms, and a larger workspace compared with parallel mechanisms. The locking mechanism in each joint allows the manipulator to be controlled by only three wires. Modeling the dynamics of this manipulator presents an inherent complexity due to its closed-loop structure and kinematic constraints. In the first part of this paper, the inverse kinematics of the manipulator, which consists of position, velocity, and acceleration, is studied. In the second part, the inverse and forward dynamics of the manipulator is formulated based on... 

    Experimental kinematic calibration of parallel manipulators using a relative position error measurement system

    , Article Robotics and Computer-Integrated Manufacturing ; Vol. 26, Issue 6 , 2010 , pp. 799-804 ; ISSN: 07365845 Abtahi, M ; Pendar, H ; Alasty, A ; Vossoughi, G ; Sharif University of Technology
    Abstract
    Because of errors in the geometric parameters of parallel robots, it is necessary to calibrate them to improve the positioning accuracy for accurate task performance. Traditionally, to perform system calibration, one needs to measure a number of robot poses using an external measuring device. However, this process is often time-consuming, expensive and difficult for robot on-line calibration. In this paper, a methodical way of calibration of parallel robots is introduced. This method is performable only by measuring joint variable vector and positioning differences relative to a constant position in some sets of configurations that the desired positions in each set are fixed, but the moving... 

    Modeling, control and simulation of a new large scale cable-driven robot

    , Article Proceedings of the ASME International Design Engineering Technical Conferences and Computers and Information in Engineering Conference 2009, DETC2009 ; Volume 7, Issue PARTS A AND B , 2009 , p. 11-16 ; ISBN: 9780791849040 Alikhani, A ; Behzadipour, S ; Ghahremani, F ; Alasty, A ; Vanini, S. A. S ; Sharif University of Technology
    Abstract
    In this paper, modeling and control of a new cable-driven robot is presented. In this mechanism, the cable arrangement eliminates the rotational motions leaving the moving platform with three translational motion. The mechanism has potentials for large scale manipulation and robotics in harsh environments. In this article kinematics and dynamics models for the proposed cable-driven architecture are derived. Additionally, Feedback linearization under input constraints is used for the control of the robot. The control algorithm ensures the cable tensions are positive while minimizing the sum of all the torques exerted by the actuators. Finally, the implementation of the proposed method is... 

    Equations of motion of a ring-like robot with a flexible body and creeping-rolling motion

    , Article ASME International Mechanical Engineering Congress and Exposition, Proceedings ; 2010 , pp. 191-197 ; ISBN: 9780791843833 Nejad, A. H ; Alasty, A ; Sharif University of Technology
    Abstract
    The robots that can move on rough terrains are very important especially in Rescue operation, exploration, etc. In this research, a mechanism is introduced for a ring-like robot with a flexible body. This robot is moved by arms which are placed radially and have Reciprocating motion in this direction. By controlling the contraction and the extension of the arms which contact lhe ground, the robot will be forced to move which is called rolling-creeping motion. The robot is stable in stationary state.; also the maximum angle which it can be stable is determined. Considering the speed of contracted arm is the input parameter, the speed of the extended arm for locomotion of the robot has been... 

    VirSense: A novel haptic device with fixed-base motors and a gravity compensation system

    , Article Industrial Robot ; Vol. 41, Issue. 1 , 2014 , pp. 37-49 ; ISSN: 0143991X Mashayekhi, A ; Nahvi, A ; Yazdani, M ; Moghadam, M. M ; Arbabtafti, M ; Norouzi, M ; Sharif University of Technology
    Abstract
    Purpose - This paper aims to present the design and implementation of VirSense, a novel six-DOF haptic interface system, with an emphasis on its gravity compensation and fixed-base motors. Design/methodology/approach - In this paper, the design and manufacture of the VirSense robot and its comparison with the existing haptic devices are presented. The kinematic analysis of the robot, design of the components, and manufacturing of the robot are explained as well. Findings - The proposed system is employed to generate a Virtual Sense (VirSense) with fixed-base motors and a spring compensation system for counterbalancing the torques generated by the weight of the links. The fixed bases of the... 

    The MOG weak field approximation - II. Observational test of Chandra X-ray clusters

    , Article Monthly Notices of the Royal Astronomical Society ; Volume 441, Issue 4 , June , 2014 , Pages 3724-3732 ; ISSN: 00358711 Moffat, J. W ; Rahvar, S ; Sharif University of Technology
    Abstract
    We apply the weak field approximation limit of the covariant scalar-tensor-vector gravity theory, so-called MOdified gravity (MOG), to the dynamics of clusters of galaxies by using only baryonic matter. The MOG effective gravitational potential in the weak field approximation is composed of an attractive Newtonian term and a repulsive Yukawa term with two parameters α and μ. The numerical values of these parameters have been obtained by fitting the predicted rotation curves of galaxies to observational data, yielding the best-fitting result: α =8.89±0.34 and μ = 0.042 ± 0.004 kpc-1. We extend the observational test of this theory to clusters of galaxies, using data for the ionized gas and... 

    A novel remote center of motion mechanism for the force-reflective master robot of haptic tele-surgery systems

    , Article International Journal of Medical Robotics and Computer Assisted Surgery ; Vol. 10, Issue. 2 , Jun , 2014 , pp. 129-139 ; ISSN: 14785951 Hadavand, M ; Mirbagheri, A ; Behzadipour, S ; Farahmand, F ; Sharif University of Technology
    Abstract
    Background: An effective master robot for haptic tele-surgery applications needs to provide a solution for the inversed movements of the surgical tool, in addition to sufficient workspace and manipulability, with minimal moving inertia. Method: A novel 4+1-DOF mechanism was proposed, based on a triple parallelogram linkage, which provided a Remote Center of Motion (RCM) at the back of the user's hand. The kinematics of the robot was analyzed and a prototype was fabricated and evaluated by experimental tests. Results: With a RCM at the back of the user's hand the actuators far from the end effector, the robot could produce the sensation of hand-inside surgery with minimal moving inertia. The... 

    A fast kinematic-based control method for lower-limb power augmentation exoskeleton

    , Article 2014 2nd RSI/ISM International Conference on Robotics and Mechatronics, ICRoM 2014 ; 2014 , pp. 678-683 ; ISBN: 9781479967438 Taherifar, A ; Vossoughi, G. R ; Ghafari, A. S ; Jokar, M ; Sharif University of Technology
    Abstract
    Exoskeletons are robotic devices which are used in power augmentation and rehabilitation robotics. The exoskeleton control system is one of the most challenging issues in humanrobot interaction systems. Although the rehabilitation robotic control methods are well studied, little research has been conducted on power augmenting control methods. This paper presents a novel idea in control system of exoskeletons for load carrying and power augmentation. Here, the desired linear velocity of the exoskeleton in interaction points are taken to be proportional to interaction force at the corresponding location. The introduced control method is merely based on kinematic model and thus easy to... 

    Elevation and orientation of external loads influence trunk neuromuscular response and spinal forces despite identical moments at the L5-S1 level

    , Article Journal of Biomechanics ; Vol. 47, issue. 12 , September , 2014 , p. 3035-3042 Ouaaid, Z. E ; Shirazi-Adl, A ; Plamondon, A ; Arjmand, N ; Sharif University of Technology
    Abstract
    A wide range of loading conditions involving external forces with varying magnitudes, orientations and locations are encountered in daily activities. Here we computed the effect on trunk biomechanics of changes in force location (two levels) and orientation (5 values) in 4 subjects in upright standing while maintaining identical external moment of 15. Nm, 30. N. m or 45. Nm at the L5-S1. Driven by measured kinematics and gravity/external loads, the finite element models yielded substantially different trunk neuromuscular response with moderate alterations (up to 24% under 45 Nm moment) in spinal loads as the load orientation varied. Under identical moments, compression and shear forces at... 

    A novel stability and kinematics-driven trunk biomechanical model to estimate muscle and spinal forces

    , Article Medical Engineering and Physics ; Vol. 36, issue. 10 , 2014 , p. 1296-1304 Hajihosseinali, M ; Arjmand, N ; Shirazi-Adl, A ; Farahmand, F ; Ghiasi, M. S ; Sharif University of Technology
    Abstract
    An anatomically detailed eighteen-rotational-degrees-of-freedom model of the human spine using optimization constrained to equilibrium and stability requirements is developed and used to simulate several symmetric tasks in upright and flexed standing postures. Predictions of this stability and kinematics-driven (S. +. KD) model for trunk muscle forces and spine compressive/shear loads are compared to those of our existing kinematics-driven (KD) model where both translational and rotational degrees-of-freedom are included but redundancy is resolved using equilibrium conditions alone. Unlike the KD model, the S. +. KD model predicted abdominal co-contractions that, in agreement with... 

    Transient free-surface seepage in three-dimensional general anisotropic media by BEM

    , Article Engineering Analysis with Boundary Elements ; Vol. 46, issue , 2014 , p. 51-66 Rafiezadeh, K ; Ataie-Ashtiani, B ; Sharif University of Technology
    Abstract
    Kinematic boundary condition is usually used when dealing with transient free-surface flow problems in isotropic media. When dealing with anisotropic problems, a transformation can transform the anisotropic media to an equivalent isotropic media for seepage analysis, but the kinematic boundary condition cannot be used directly in the transformed media. A generalization of the kinematic boundary condition along any arbitrary direction is derived for use in the transformed domain for general three-dimensional anisotropic problems. A boundary element method for solving transient free-surface seepage problems is developed and the treatment of the proposed kinematic boundary condition in the... 

    Dwarf galaxies in the coma cluster - I. Velocity dispersion measurements

    , Article Monthly Notices of the Royal Astronomical Society ; Volume 420, Issue 4 , March , 2012 , Pages 2819-2834 ; 00358711 (ISSN) Kourkchi, E ; Khosroshahi, H. G ; Carter, D ; Karick, A. M ; Mármol Queraltó, E ; Chiboucas, K ; Tully, R. B ; Mobasher, B ; Guzmán, R ; Matković, A ; Gruel, N ; Sharif University of Technology
    Abstract
    We present the study of a large sample of early-type dwarf galaxies in the Coma cluster observed with DEIMOS on the Keck II to determine their internal velocity dispersion. We focus on a subsample of 41 member dwarf elliptical galaxies for which the velocity dispersion can be reliably measured, 26 of which were studied for the first time. The magnitude range of our sample is -21 < M R < -15mag. This paper (Paper I) focuses on the measurement of the velocity dispersion and their error estimates. The measurements were performed using penalized pixel fitting (ppxf) and using the calcium triplet absorption lines. We use Monte Carlo bootstrapping to study various sources of uncertainty in our... 

    Dwarf galaxies in the Coma cluster - II. Spectroscopic and photometric fundamental planes

    , Article Monthly Notices of the Royal Astronomical Society ; Volume 420, Issue 4 , March , 2012 , Pages 2835-2850 ; 00358711 (ISSN) Kourkchi, E ; Khosroshahi, H. G ; Carter, D ; Mobasher, B ; Sharif University of Technology
    Abstract
    We present a study of the Fundamental Plane (FP) for a sample of 71 dwarf galaxies in the core of the Coma cluster in the magnitude range -21 < M I < -15. Taking advantage of the high-resolution DEIMOS spectrograph on Keck II for measuring the internal velocity dispersion of galaxies and high-resolution imaging of the Hubble Space Telescope (HST)/ACS, which allows an accurate surface brightness modelling, we extend the FP of galaxies to luminosities of ~1 mag fainter than all the previous studies of the FP in the Coma cluster. We find that the scatter about the FP depends on the faint-end luminosity cut-off, such that the scatter increases for fainter galaxies. The residual from the FP... 

    A modal approach to second-order analysis of sloshing using boundary element method

    , Article Ocean Engineering ; Volume 38, Issue 1 , Volume 38, Issue 1 , 2011 , Pages 11-21 ; 00298018 (ISSN) Firouz Abadi, R. D ; Ghasemi, M ; Haddadpour, H ; Sharif University of Technology
    Abstract
    This paper aims at developing a modal approach for the non-linear analysis of sloshing in an arbitrary-shape tank under both horizontal and vertical excitations. For this purpose, the perturbation technique is employed and the potential flow is adopted as the liquid sloshing model. The first- and second-order kinematic and dynamic boundary conditions of the liquid-free surface are used along with a boundary element model which is formulated in terms of the velocity potential of the liquid-free surface. The boundary element model is used to determine the natural mode shapes of sloshing and their corresponding frequencies. Using the modal analysis technique, a non-linear model is presented for... 

    A mixture of modular structures to describe human motor planning level: A new perspective based on motor decomposition

    , Article 2011 18th Iranian Conference of Biomedical Engineering, ICBME 2011 ; 2011 , Pages 199-204 ; 9781467310055 (ISBN) Sadeghi, M ; Andani, M. E ; Fattah, A ; Parnianpour, M ; Sharif University of Technology
    Abstract
    A modular hierarchical structure is developed to describe human movement planning level. The modular feature of the proposed model enables it to generalize planning a task. The movements are planned based on decomposing a task into its corresponding subtasks (motion phases). There is a module responsible for one condition. The final plan is constructed using soft computing of the plans proposed by different modules. Each module estimates the kinematics of the joints at the end of each subtask; we call them kinematic estimator modules (KEMs). A timing module estimates the duration of motion and a gating module determines the responsibility of each KEM under different conditions. To evaluate... 

    Constitutive modeling of temperature and strain rate dependent elastoplastic hardening materials using a corotational rate associated with the plastic deformation

    , Article International Journal of Plasticity ; Volume 27, Issue 9 , 2011 , Pages 1445-1455 ; 07496419 (ISSN) Ghavam, K ; Naghdabadi, R ; Sharif University of Technology
    Abstract
    In this paper, a constitutive model with a temperature and strain rate dependent flow stress (Bergstrom hardening rule) and modified Armstrong-Frederick kinematic evolution equation for elastoplastic hardening materials is introduced. Based on the multiplicative decomposition of the deformation gradient,new kinematic relations for the elastic and plastic left stretch tensors as well as the plastic deformation-dependent spin tensor are proposed. Also, a closed-form solution has been obtained for the elastic and plastic left stretch tensors for the simple shear problem.To evaluate model validity, results are compared with known experimental data for SUS 304 stainless steel, which shows a good... 

    Singularity analysis of parallel manipulators using constraint plane method

    , Article Mechanism and Machine Theory ; Volume 46, Issue 1 , 2011 , Pages 33-43 ; 0094114X (ISSN) Pendar, H ; Mahnama, M ; Zohoor, H ; Sharif University of Technology
    Abstract
    One of the most challenging problems in dealing with parallel manipulators is identifying their forward singular configurations. In such configurations these mechanisms become uncontrollable and cannot tolerate any external force. In this article a geometrical method, namely Constraint Plane Method (CPM), is introduced with the use of which one can easily obtain the singular configurations in many parallel manipulators. CPM is a methodical technique based on the famous Ceva plane geometry theorem. It is interesting to note that CPM involves no calculations and yields te result quickly. In addition, some of the previous geometrical methods led to many separate singular configurations;... 

    Optimal gait planning for humanoids with 3D structure walking on slippery surfaces

    , Article Robotica ; 2015 ; 02635747 (ISSN) Khadiv, M ; Moosavian, S. A. A ; Yousefi Koma, A ; Sadedel, M ; Mansouri, S ; Sharif University of Technology
    Abstract
    In this study, a gait optimization routine is developed to generate walking patterns which demand the lowest friction forces for implementation. The aim of this research is to fully address the question “which walking pattern demands the lowest coefficient of friction amongst all feasible patterns?”. To this end, first, the kinematic structure of the considered 31 DOF (Degrees of Freedom) humanoid robot is investigated and a closed-form dynamics model for its lower-body is developed. Then, the medium through which the walking pattern generation is conducted is presented. In this medium, after designing trajectories for the feet and the pelvis, the joint space variables are obtained, using... 

    Effects of geometric hystersis in lung deformation on irreversiblity in trajectories of fine inhaled particles

    , Article ASME 2010 10th Biennial Conference on Engineering Systems Design and Analysis, ESDA2010, 12 July 2010 through 14 July 2010 ; Volume 1 , 2010 , Pages 789-796 ; 9780791849156 (ISBN) Zendehbad, M ; Saidi, M. S ; Sani, M ; Sharif University of Technology
    Abstract
    In order to perform the drug delivery via lung, tracking the trajectories of fine inhaled particles in the acinar airways is of high importance. The causes of irreversibility in the motion of fine particles (0.1 - 1 micron) and chaotic flow deep in the acinar region of lung has been always under investigation. In this study we demonstrate the importance of geometric hystersis and asynchrony of lung deformation on the issue. We adapted a 2D axisymmetric geometry of alveolated duct from recent relative works and deformed it in a way that some hystersis would appear in a respiration period. The overall deformation of duct was corresponding to the transpulmonary pressure of lung reported in...