Search for: lab-on-a-chip
0.008 seconds
Total 38 records

    Advancement of sensor integrated organ-on-chip devices

    , Article Sensors (Switzerland) ; Volume 21, Issue 4 , 2021 , Pages 1-44 ; 14248220 (ISSN) Clarke, G.A ; Hartse, B. X ; Niaraki Asli, A. E ; Taghavimehr, M ; Hashemi, N ; Abbasi Shirsavar, M ; Montazami, R ; Alimoradi, N ; Nasirian, V ; Ouedraogo, L. J ; Hashemi, N. N ; Sharif University of Technology
    MDPI AG  2021
    Organ-on-chip devices have provided the pharmaceutical and tissue engineering worlds much hope since they arrived and began to grow in sophistication. However, limitations for their applicability were soon realized as they lacked real-time monitoring and sensing capabilities. The users of these devices relied solely on endpoint analysis for the results of their tests, which created a chasm in the understanding of life between the lab the natural world. However, this gap is being bridged with sensors that are integrated into organ-on-chip devices. This review goes in-depth on different sensing methods, giving examples for various research on mechanical, electrical resistance, and bead-based... 

    Nanotechnology-assisted microfluidic systems: From bench to bedside

    , Article Nanomedicine ; Volume 16, Issue 3 , 2021 , Pages 237-258 ; 17435889 (ISSN) Rabiee, N ; Ahmadi, S ; Fatahi, Y ; Rabiee, M ; Bagherzadeh, M ; Dinarvand, R ; Bagheri, B ; Zarrintaj, P ; Saeb, M. R ; Webster, T. J ; Sharif University of Technology
    Future Medicine Ltd  2021
    With significant advancements in research technologies, and an increasing global population, microfluidic and nanofluidic systems (such as point-of-care, lab-on-a-chip, organ-on-a-chip, etc) have started to revolutionize medicine. Devices that combine micron and nanotechnologies have increased sensitivity, precision and versatility for numerous medical applications. However, while there has been extensive research on microfluidic and nanofluidic systems, very few have experienced wide-spread commercialization which is puzzling and deserves our collective attention. For the above reasons, in this article, we review research advances that combine micro and nanotechnologies to create the next... 

    Emerging phospholipid nanobiomaterials for biomedical applications to lab-on-a-chip, drug delivery, and cellular engineering

    , Article ACS Applied Bio Materials ; 2021 ; 25766422 (ISSN) Rahimnejad, M ; Rabiee, N ; Ahmadi, S ; Jahangiri, S ; Sajadi, S. M ; Akhavan, O ; Saeb, M. R ; Kwon, W ; Kim, M ; Hahn, S. K ; Sharif University of Technology
    American Chemical Society  2021
    The design of advanced nanobiomaterials to improve analytical accuracy and therapeutic efficacy has become an important prerequisite for the development of innovative nanomedicines. Recently, phospholipid nanobiomaterials including 2-methacryloyloxyethyl phosphorylcholine (MPC) have attracted great attention with remarkable characteristics such as resistance to nonspecific protein adsorption and cell adhesion for various biomedical applications. Despite many recent reports, there is a lack of comprehensive review on the phospholipid nanobiomaterials from synthesis to diagnostic and therapeutic applications. Here, we review the synthesis and characterization of phospholipid nanobiomaterials... 

    Cancer cell enrichment on a centrifugal microfluidic platform using hydrodynamic and magnetophoretic techniques

    , Article Scientific Reports ; Volume 11, Issue 1 , 2021 ; 20452322 (ISSN) Shamloo, A ; Naghdloo, A ; Besanjideh, M ; Sharif University of Technology
    Nature Research  2021
    Isolation of rare cancer cells is one of the important and valuable stages of cancer research. Regarding the rarity of cancer cells in blood samples, it is important to invent an efficient separation device for cell enrichment. In this study, two centrifugal microfluidic devices were designed and fabricated for the isolation of rare cancer cells. The first design (passive plan) employs a contraction–expansion array (CEA) microchannel which is connected to a bifurcation region. This device is able to isolate the target cells through inertial effects and bifurcation law. The second design (hybrid plan) also utilizes a CEA microchannel, but instead of using the bifurcation region, it is... 

    A tool for designing tree-like concentration gradient generators for lab-on-a-chip applications

    , Article Chemical Engineering Science ; Volume 212 , 2020 Ebadi, M ; Moshksayan, K ; Kashaninejad, N ; Saidi, M. S ; Nguyen, N. T ; Sharif University of Technology
    Elsevier Ltd  2020
    Concentration gradient generators (CGGs) help biologists to perform large scale, fast and high-throughput experiments. This paper introduces a design tool called Tree-like Concentration gradient generator Design Tool (TCDT). The performance of this tool is validated both numerically and experimentally. Three CGGs were fabricated using three different fabrication methods and design parameters. The performance of these devices was examined using the measurement of fluorescent and dye intensity. The performance of the design tool for non-linear and multi-drug concentration gradient generations was investigated as well. In addition, a method was developed to investigate the multi-drug... 

    Microfluidic-based approaches in targeted cell/particle separation based on physical properties: fundamentals and applications

    , Article Small ; Volume 16, Issue 29 , 2020 Nasiri, R ; Shamloo, A ; Ahadian, S ; Amirifar, L ; Akbari, J ; Goudie, M. J ; Lee, K ; Ashammakhi, N ; Dokmeci, M. R ; Di Carlo, D ; Khademhosseini, A ; Sharif University of Technology
    Wiley-VCH Verlag  2020
    Cell separation is a key step in many biomedical research areas including biotechnology, cancer research, regenerative medicine, and drug discovery. While conventional cell sorting approaches have led to high-efficiency sorting by exploiting the cell's specific properties, microfluidics has shown great promise in cell separation by exploiting different physical principles and using different properties of the cells. In particular, label-free cell separation techniques are highly recommended to minimize cell damage and avoid costly and labor-intensive steps of labeling molecular signatures of cells. In general, microfluidic-based cell sorting approaches can separate cells using “intrinsic”... 

    Microfluidic devices with gold thin film channels for chemical and biomedical applications: a review

    , Article Biomedical Microdevices ; Volume 21, Issue 4 , 2019 ; 13872176 (ISSN) Ghasemi Toudeshkchoui, M ; Rabiee, N ; Rabiee, M ; Bagherzadeh, M ; Tahriri, M ; Tayebi, L ; Hamblin, M. R ; Sharif University of Technology
    Springer New York LLC  2019
    Microfluidic systems (MFS) provide a range of advantages in biomedical applications, including improved controllability of material characteristics and lower consumption of reagents, energy, time and money. Fabrication of MFS employs various materials, such as glass, silicon, ceramics, paper, and metals such as gold, copper, aluminum, chromium and titanium. In this review, gold thin film microfluidic channels (GTFMFC) are discussed with reference to fabrication methods and their diverse use in chemical and biomedical applications. The advantages of gold thin films (GTF) include flexibility, ease of manufacture, adhesion to polymer surfaces, chemical stability, good electrical conductivity,... 

    A foreign body response-on-a-chip platform

    , Article Advanced Healthcare Materials ; Volume 8, Issue 4 , 2019 ; 21922640 (ISSN) Sharifi, F ; Htwe, S. S ; Righi, M ; Liu, H ; Pietralunga, A ; Yesil Celiktas, O ; Maharjan, S ; Cha, B. H ; Shin, S. R ; Dokmeci, M. R ; Vrana, N. E ; Ghaemmaghami, A. M ; Khademhosseini, A ; Zhang, Y. S ; Sharif University of Technology
    Wiley-VCH Verlag  2019
    Understanding the foreign body response (FBR) and desiging strategies to modulate such a response represent a grand challenge for implant devices and biomaterials. Here, the development of a microfluidic platform is reported, i.e., the FBR-on-a-chip (FBROC) for modeling the cascade of events during immune cell response to implants. The platform models the native implant microenvironment where the implants are interfaced directly with surrounding tissues, as well as vasculature with circulating immune cells. The study demonstrates that the release of cytokines such as monocyte chemoattractant protein 1 (MCP-1) from the extracellular matrix (ECM)-like hydrogels in the bottom tissue chamber... 

    Challenge in particle delivery to cells in a microfluidic device

    , Article Drug Delivery and Translational Research ; Volume 8, Issue 3 , 2018 , Pages 830-842 ; 2190393X (ISSN) Moghadas, H ; Saidi, M. S ; Kashaninejad, N ; Nguyen, N. T ; Sharif University of Technology
    Springer Verlag  2018
    Micro and nanotechnology can potentially revolutionize drug delivery systems. Novel microfluidic systems have been employed for the cell culture applications and drug delivery by micro and nanocarriers. Cells in the microchannels are under static and dynamic flow perfusion of culture media that provides nutrition and removes waste from the cells. This exerts hydrostatic and hydrodynamic forces on the cells. These forces can considerably affect the functions of the living cells. In this paper, we simulated the flow of air, culture medium, and the particle transport and deposition in the microchannels under different angles of connection inlet. It was found that the shear stress induced by the... 

    Design and fabrication of a centrifugal microfluidic disc including septum valve for measuring hemoglobin A1c in human whole blood using immunoturbidimetry method

    , Article Talanta ; Volume 190 , 2018 , Pages 134-139 ; 00399140 (ISSN) Mahmodi Arjmand, E ; Saadatmand, M ; Bakhtiari, M. R ; Eghbal, M ; Sharif University of Technology
    Elsevier B.V  2018
    Diabetes mellitus is a global endemic with a rapidly increasing prevalence in both developing and developed countries. Recently, hemoglobin A1c has been recommended by the American Diabetes Associations as a possible substitute for fasting blood glucose for the diagnosis of diabetes, because it is an indicator of long-term glycemic control. Also, centrifugal microfluidic systems have good potential for use in the point of care testing systems. In this study, a centrifugal microfluidic disc was designed and manufactured to measure hemoglobin A1c in whole blood using an immunoturbidimetry based method. Also, a new passive valve, named septum valve, was presented to precisely control the entry... 

    Design and simulation of a microfluidic device for acoustic cell separation

    , Article Ultrasonics ; Volume 84 , March , 2018 , Pages 234-243 ; 0041624X (ISSN) Shamloo, A ; Boodaghi, M ; Sharif University of Technology
    Elsevier B.V  2018
    Experimental acoustic cell separation methods have been widely used to perform separation for different types of blood cells. However, numerical simulation of acoustic cell separation has not gained enough attention and needs further investigation since by using numerical methods, it is possible to optimize different parameters involved in the design of an acoustic device and calculate particle trajectories in a simple and low cost manner before spending time and effort for fabricating these devices. In this study, we present a comprehensive finite element-based simulation of acoustic separation of platelets, red blood cells and white blood cells, using standing surface acoustic waves... 

    Newtonian and generalized Newtonian reacting flows in serpentine microchannels: pressure driven and centrifugal microfluidics

    , Article Journal of Non-Newtonian Fluid Mechanics ; Volume 251 , January , 2018 , Pages 88-96 ; 03770257 (ISSN) Madadelahi, M ; Shamloo, A ; Sharif University of Technology
    Elsevier B.V  2018
    This paper presents a comprehensive 3D numerical simulation of reacting flows in micro scale dimension through centrifugal, or Lab-On-a-CD (LOCD), and pressure-driven, or Lab-On-a-Chip (LOC) devices. Three different serpentine channel configurations (rectangular, triangular and sinusoidal) are investigated. In these configurations, two chemical species enter from two inlets and according to an irreversible chemical reaction, start yielding other species. Both Newtonian and generalized Newtonian fluids are considered in the simulations and the results are compared for both LOC and LOCD devices. Besides, the effects of different parameters such as the aspect ratio of channels’ cross section,... 

    Modeling, simulation, and employing dilution–dialysis microfluidic chip (DDMC) for heightening proteins refolding efficiency

    , Article Bioprocess and Biosystems Engineering ; Volume 41, Issue 5 , 2018 , Pages 707-714 ; 16157591 (ISSN) Kashanian, F ; Masoudi, M. M ; Shamloo, A ; Habibi Rezaei, M ; Moosavi Movahedi, A. A ; Sharif University of Technology
    Springer Verlag  2018
    Miniaturized systems based on the principles of microfluidics are widely used in various fields, such as biochemical and biomedical applications. Systematic design processes are demanded the proper use of these microfluidic devices based on mathematical simulations. Aggregated proteins (e.g., inclusion bodies) in solution with chaotropic agents (such as urea) at high concentration in combination with reducing agents are denatured. Refolding methods to achieve the native proteins from inclusion bodies of recombinant protein relying on denaturant dilution or dialysis approaches for suppressing protein aggregation is very important in the industrial field. In this paper, a modeling approach is... 

    3D modeling of reaction-diffusion dynamics in an electrokinetic Y-shaped microreactor

    , Article Sensors and Actuators, B: Chemical ; Volume 235 , 2016 , Pages 343-355 ; 09254005 (ISSN) Helisaz, H ; Saidi, M. H ; Sadeghi, A ; Sharif University of Technology
    Elsevier  2016
    We perform a 3D numerical modeling of reaction-diffusion dynamics in a Y-shaped microreactor, considering a fully developed combined electroosmotic and pressure-driven flow. The governing equations, based on a second-order irreversible reaction, are solved invoking a finite-volume approach for a non-uniform grid system. We demonstrate that the reaction is highly position dependent: more production is observed adjacent to the horizontal walls for a favorable pressure gradient, whereas both the wall and centerline are the regions of highest production when a back pressure is applied. We further show that, to achieve the maximum production rate, the EDL should be thick enough, the pressure... 

    Deriving an analytical model for hydro-magnetic micro flow controller

    , Article 6th International Conference on Nanochannels, Microchannels, and Minichannels, ICNMM2008, Darmstadt, 23 June 2008 through 25 June 2008 ; Issue PART B , June , 2008 , Pages 1139-1146 ; 0791848345 (ISBN); 9780791848340 (ISBN) Esmaily Moghadam, M ; Shafii, M. B ; ASME ; Sharif University of Technology
    Fluid control, namely pumping and valving, is a critical factor in the performance of micro-fluidic systems. In recent years a variety of micro-fluidic systems are developed for the purpose of miniaturizing fluid handling, and chemical analysis to develop Lab On a Chip (LOC) technology. The mentioned facts resulted in design and fabrication of a novel hydromagnetic flow controller. The idea behind this device is that magnetic particles, mixed and dispersed in a carrier liquid, can be accumulated in the form of a piston. Depending upon dragging speed of these pistons, which itself is a function of switching time, this device can be used to either increase (pumping) or decrease (valving) the... 

    Design and Simulation of CMOS Based Magnetic Sensor for Biosensing Applications

    , M.Sc. Thesis Sharif University of Technology Mafi, Alireza (Author) ; Akbari, Mahmood (Supervisor) ; Fotowat-Ahmady, Ali (Supervisor)
    This paper presents a scalable and ultrasensitive magnetic biosensing scheme based on on-chip LC resonance frequency-shifting. The sensor transducer gain is demonstrated as being location-dependent on the sensing surface and proportional to the local polarization magnetic field strength |B|2 generated by the sensing inductor. To improve the gain uniformity, a periodic coil is proposed as a substitution for the standard process coil. As an implementation example, the circuit is designed in a 65nm CMOS process. The spatially uniform sensor gain of the array is verified by COMSOL simulations. Overall, the presented sensor demonstrates an improvement in the uniformity of the inductor’s magnetic... 

    Numerical Study of Enhancement of Inflection Point Focusing for Blood Cell Separation

    , M.Sc. Thesis Sharif University of Technology Mirtalebi, Elnaz (Author) ; Moosavi, Ali (Supervisor) ; Sadrhosseini, Hani (Co-Supervisor)
    Today, the determination and therapy of numerous illnesses, including malignant growth, relies upon the information and assessment of platelets, so blood testing and cell examination is fundamental to survey the movement of disease. The lab on a chip innovation is utilized as an extremely productive device in cell studies. The lab on a chip is used as a foundation and a substrate for making a legitimate stream for cell processes in medication. This innovation is a gadget or framework with millimeters or centimeters aspects like a chip, and it performs research facility handling on a micron-scale. In spite of the fact that it has a few impediments, it has so many values; for example, it... 

    Design and Manufacturing of a Setup for Solid-state Nanopore Fabrication

    , M.Sc. Thesis Sharif University of Technology Bayat, Alireza (Author) ; Akbari, Javad (Supervisor) ; Taghipour, Mojtaba (Supervisor)
    The aim of the current research is to study the process of making a solidstate nanopore by molding from PDMS polymer and to make a laboratory sample of a solidstate nanopore manufacturing device using this method. Solid-state nanopores are used to control ion transport in microfluidic channels,lab-on-a-chip detection to study nucleic acids and proteins, desalination, nanofluidic transistors,single-cell sensing tools, and particle classification. In general, the smaller the nanopore, the shorter the length and the higher the mechanical stability, the better the performance. In this research, chips have been made on which there is a blade with a sharpness of 10 nanometers and a height of 10... 

    Design a Microfluidics System for Drug Testing of Leukemia Patient's Bone Marrow Aspirate

    , M.Sc. Thesis Sharif University of Technology Rahimi, Ali (Author) ; Saidi, Mohammad Said (Supervisor)
    Cancer is one of the most causes of mortality in the world. Leukemia is a type of cancer initiated by the rapid proliferation of blood cells including WBCs, RBCs, and Platelets, that classified into four general types of AML, ALL, CML, and CLL. The main treatment of leukemia is chemotherapy. Because of many problems that patients have with this treatment and not so good results of chemotherapy, we design a microfluidic chip that can perform personalized medicine treatment for leukemia patients.This microchip consists of two main parts, Concentration Gradient Generator (CGG), and cell culture. CGG system is a tree CGG with two inlets and four outlets, which makes a linear concentration of... 

    Design and Numerical Simulation of a Micro-chip for Separating CTCs from Peripheral Blood

    , M.Sc. Thesis Sharif University of Technology Niknam, Hamid Reza (Author) ; Saeedi, Mohammad Saeed (Supervisor)
    According to studies, cancer is the second leading cause of death in the world and millions of people die from this disease every year. Early diagnosis is one of the most important factors in controlling and treating the disease. The ability of circulating tumor cells to diagnose and monitor the disease has led many researchers to focus on studying and researching these cells in recent years. However, due to the fact that the concentration of this type of cells in the blood is very low, their isolation is associated with challenges. Various methods isolate CTCs based on physical, biological and other differences in characteristics. In this study, we investigate performance of a microfluidic...