Loading...
Search for: leg-muscles
0.012 seconds

    Modular neuromuscular control of human locomotion by central pattern generator

    , Article Journal of Biomechanics ; Volume 53 , 2017 , Pages 154-162 ; 00219290 (ISSN) Haghpanah, S. A ; Farahmand, F ; Zohoor, H ; Sharif University of Technology
    Abstract
    The central pattern generators (CPG) in the spinal cord are thought to be responsible for producing the rhythmic motor patterns during rhythmic activities. For locomotor tasks, this involves much complexity, due to a redundant system of muscle actuators with a large number of highly nonlinear muscles. This study proposes a reduced neural control strategy for the CPG, based on modular organization of the co-active muscles, i.e., muscle synergies. Four synergies were extracted from the EMG data of the major leg muscles of two subjects, during two gait trials each, using non-negative matrix factorization algorithm. A Matsuoka׳s four-neuron CPG model with mutual inhibition, was utilized to... 

    O 027 - There are common patterns of muscle synergy in cerebral palsy crouch gait

    , Article Gait and Posture ; Volume 65 , 2018 , Pages 55-56 ; 09666362 (ISSN) Shojaeefard, M ; Khandan, A ; Baniasad, M. A ; Farahmand, F ; Baghdadi, S ; Vafaei, A ; Narimani, R ; Sharif University of Technology
    Elsevier B.V  2018
    Abstract
    Background: Muscle synergy is the leading hypothesis on how the central nervous system coordinates limb functions. Cerebral palsy (CP) patients utilize fewer synergies, and are believed to have a simpler neuromuscular control. This study was undertaken to determine whether consistent muscle synergies are recruited during ambulation in cerebral palsy crouch gait and how the muscles contribute to such synergies. Methods: Ten ambulatory CP patients were recruited. All walked with crouch gait. sEMG data were collected from 14 lower limb muscles during gait analysis. Non-negative matrix factorization method was utilized to extract muscle synergies. Results and significance: A total of five... 

    Effects of human stature and muscle strength on the standing strategies: A computational biomechanical study

    , Article Proceedings of the Institution of Mechanical Engineers, Part H: Journal of Engineering in Medicine ; Volume 234, Issue 7 , 2020 , Pages 674-685 Ashtiani, M. N ; Azghani, M. R ; Parnianpour, M ; Khalaf, K ; Sharif University of Technology
    SAGE Publications Ltd  2020
    Abstract
    It has been hypothesized that the muscular efforts exerted during standing may be altered by changes in personal factors, such as the body stature and muscular strength. The goal of this work was to assess the contribution of leg muscles using a biomechanical model in different physical conditions and various initial postures. An optimized inverse dynamics model was employed to find the maximum muscular effort in 23,040 postures. The simulation results showed that mid-range knee flexion could help the healthy and strong individuals maintain balance, but those with weaker muscle strength required more knee flexion. Individuals of weak muscular constitution as well as those with tall stature...