Loading...
Search for: light-modulators
0.006 seconds
Total 35 records

    Assessing and Improving Algorithms to Control the Propagation of Light through Scattering Media

    , M.Sc. Thesis Sharif University of Technology Fayyaz, Zahra (Author) ; Rahimitabar, Mohammad Reza (Supervisor) ; Nasiriavanaki, Mohammad Reza (Supervisor)
    Abstract
    Light propagation through turbid media, such as biological tissues, experience scattering due to inhomogeneous distribution of refractive indices of their microscopic structure. Scattering and diffusion of light not only limit many optical imaging techniques, but are also big challenges for telecommunication, spectroscopy, and other optical techniques. Recently many new imaging methods are developed that work in strongly scattering media such as optical coherence tomography, diffusion tomography, and laser speckle velocimetry. In this thesis, we have studied how wavefront shaping techniques can tackle the problem of scattering. By spatially shaping the wavefront of the incident beam, using... 

    Creating Double Optical Trap Using Fresnel Lens

    , M.Sc. Thesis Sharif University of Technology Farajian, Mahboubeh (Author) ; Seyed Reihani, Nader (Supervisor)
    Abstract
    Intensity or phase Modulation of a wavefront is possible by means of optical devices. Placing a grating or lens on the way of a wavefront, will alter the phase or intensity of it and this will make a diffraction pattern. Spatial Light Modulator (SLM) is an optical device which is the most important part of a video projector. One can apply grating, lens and other phases on the wavefront using this device.In this project we used SLM to modify phase of laser beam and then we made many focal points such that they could displace independently. The result of this project can be used in designing and creating a holographic optical tweezers.Moreover, A. Einstein proved that the light could be... 

    Analysis and Simulation of Micrometre-scale Silicon Electro-optic Modulators Based on Ring Resonators

    , M.Sc. Thesis Sharif University of Technology Jafari, Omid (Author) ; Akbari, Mahmood (Supervisor)

    Wavefront shaping using simulated annealing algorithm for focusing light through turbid media

    , Article Progress in Biomedical Optics and Imaging - Proceedings of SPIE, 28 January 2018 through 1 February 2018 ; Volume 10494 , 2018 ; 16057422 (ISSN); 9781510614734 (ISBN) Fayyaz, Z ; Salimi, F ; Mohammadian, N ; Fatima, A ; Rahimi Tabar, M. R ; Nasiri Avanaki, M. R ; SENO Medical Instruments, Inc.; The Society of Photo-Optical Instrumentation Engineers (SPIE) ; Sharif University of Technology
    SPIE  2018
    Abstract
    In this research, we present the results of applying simulated annealing (SA) which is a heuristic optimization algorithm for focusing light through a turbid media. The performance of this algorithm on both phase optimization and amplitude optimization has been demonstrated. A guideline to set up the SA parameters is also suggested. The performance of SA algorithm in different levels of measurement noise has been also explored. The results showed that the SA algorithm performs effectively in measurement noises as high as 0.3(I0). © COPYRIGHT SPIE. Downloading of the abstract is permitted for personal use only  

    Visible light for communication, indoor positioning, and dimmable illumination: a system design based on overlapping pulse position modulation

    , Article Optik ; Volume 151 , 2017 , Pages 110-122 ; 00304026 (ISSN) Chizari, A ; Jamali, M. V ; Abdollahramezani, S ; Salehi, J. A ; Dargahi, A ; Sharif University of Technology
    Abstract
    In this paper, we design a dimming compatible visible light communication (VLC) system with asynchronous and optimum indoor positioning method in a standard office room in combination with asynchronous and optimum indoor positioning method according to illumination standards under channel constraints. We use overlapping pulse position modulation (OPPM) to support dimming control by changing the code weights. The system parameters such as a valid interval for dimming together with an upper bound for bit rate according to the channel delay spread are investigated. Moreover, considering the dispersive VLC channel and using Monte Carlo (MC) simulations, a method is proposed to determine the... 

    Ultrastrong optical modulation in waveguides by conducting interfaces

    , Article Proceedings of SPIE - The International Society for Optical Engineering ; Volume 8631 , 2013 ; 0277786X (ISSN) ; 9780819494009 (ISBN) Karimi, F ; Khorasani, S ; The Society of Photo-Optical Instrumentation Engineers (SPIE) ; Sharif University of Technology
    2013
    Abstract
    Here, an in-depth study of a novel electro-optic phenomenon suggested earlier in optical waveguides, referred to as the conducting interfaces, is carried out. It is shown that it would be possible to achieve a very strong optical modulation effect in slab waveguides fabricated on the standard III-V InAlGaAs compound platform. The electro-optic effect is obtained by controlling the density and population of the electron and hole states in the well layer. The additional phase shift contributed to the reflection phase of the guided electromagnetic wave constitutes an ultrastrong source of optical modulation and phase control. It is estimated that a Mach-Zhender configuration based on this... 

    Tunable low-Jitter low-drift spurious-free transposed-frequency optoelectronic oscillator

    , Article IEEE Transactions on Microwave Theory and Techniques ; Volume 65, Issue 7 , 2017 , Pages 2625-2635 ; 00189480 (ISSN) Hosseini, S. E ; Banai, A ; Kartner, F. X ; Sharif University of Technology
    Abstract
    We propose and theoretically and experimentally demonstrate a novel tunable spurious-free single-loop optoelectronic oscillator (OEO) with low drift and low-phase noise. In the proposed transposed-frequency OEO (TF-OEO), a nonreciprocal bias unit and an optical phase modulator in a fiber Sagnac interferometer function jointly as an intrinsically drift-free intensity modulator, which improves the long-term drift. Besides, a transposed-frequency low-noise filtered amplifier is used which replaces the conventional radio frequency (RF) bandpass filter (BPF) and RF amplifier with an intermediate frequency (IF) BPF, an ultralow phase noise IF amplifier, and a tunable local oscillator, to attain... 

    Transmission of multi-band OFDM and impulse radio ultra-wideband signals over single mode fiber

    , Article Journal of Lightwave Technology ; Volume 26, Issue 15 , 2008 , Pages 2594-2603 ; 07338724 (ISSN) Jazayerifar, M ; Cabon, B ; Salehi, J. A ; Sharif University of Technology
    2008
    Abstract
    In this paper we examine the transmission of two types of ultra-wideband (UWB) signals, multiband orthogonal frequency division multiplexing (MB-OFDM) and impulse radio ultra-wideband (IR-UWB), over single mode fiber at 1550 nm. In order to investigate the impact of optical components such as laser diode, external modulator and single mode fiber on UWB signals, we develop mathematical models for these components. These models are experimentally verified and corresponding numerical parameter values are obtained by experiment. Using these models we discuss the transmission of two types of UWB signals over single mode fiber. A new figure of merit namely distortion factor is defined. Using this... 

    Transition region effects in tunable fiber-based wavelength sective devices

    , Article Progress in Electromagnetics Research ; Volume 82 , 2008 , Pages 33-50 ; 10704698 (ISSN) Rajabvand, M ; Behnia, F ; Fatehi, M. T ; Sharif University of Technology
    Electromagnetics Academy  2008
    Abstract
    Tunability of fiber Bragg grating (FBG) in transition region is used to implement wavelength-selective optical intensity modulator, which superimposes a secondary low-speed data on the transit high-speed payload optical signal. Theoretical model of the device is developed and verified by measurements in the linear and nonlinear slopes of the FBG. Experiments with strong and relatively weak gratings confirm the wavelength-selectivity and stability of modulation. The fiber-based modulator is employed for optically tagging or labeling individual wavelength channels using baseband and amplitude-shift keying (ASK) modulated signals. The wavelength-selective channel labeling scheme is useful for... 

    Temporal analog optical computing using an on-chip fully reconfigurable photonic signal processor

    , Article Optics and Laser Technology ; Volume 111 , 2019 , Pages 66-74 ; 00303992 (ISSN) Babashah, H ; Kavehvash, Z ; Khavasi, A ; Koohi, S ; Sharif University of Technology
    Elsevier Ltd  2019
    Abstract
    This paper introduces the concept of on-chip temporal optical computing, based on dispersive Fourier transform and suitably designed modulation module, to perform mathematical operations of interest, such as differentiation, integration, or convolution in time domain. The desired mathematical operation is performed as signal propagates through a fully reconfigurable on-chip photonic signal processor. Although a few numbers of photonic temporal signal processors have been introduced recently, they are usually bulky or they suffer from limited reconfigurability which is of great importance to implement large-scale general-purpose photonic signal processors. To address these limitations, this... 

    Resolution enhancement in long pulse OTDR for application in structural health monitoring

    , Article Optical Fiber Technology ; Volume 16, Issue 4 , 2010 , Pages 240-249 ; 10685200 (ISSN) Bahrampour, A. R ; Maasoumi, F ; Sharif University of Technology
    2010
    Abstract
    To improve the range resolution in inexpensive conventional long pulse optical time domain reflectometer (OTDR) for application in structural health monitoring (SHM) and robotic neural network, the Fourier Wavelet Regularized Deconvolution (ForWaRD) based on the adaptive wavelet method is employed. Since Deconvolution is a noise sensitive process, employing the (ForWaRD) method enhances the signal to noise ratio. Simulation for long pulse OTDR system is done and ForWaRD method is employed to improve the resolution of the OTDR system to the order of several centimeters. In this method the resolution is limited by the bandwidth of detector, bandwidth of electronic circuit, and the sampling... 

    Prediction of inter-modulation rejection values for the first and second adjacent channels in feed-forward linearised microwave amplifiers using closed-form expressions

    , Article IET Microwaves, Antennas and Propagation ; Volume 1, Issue 3 , 2007 , Pages 782-789 ; 17518725 (ISSN) Hemmatyar, A. M. A ; Farzaneh, F ; Sharif University of Technology
    2007
    Abstract
    Feed-forward is one of the main methods for linearising microwave power amplifiers. The level of inter-modulation rejection (IMR) values can be predicted by appropriate modelling of the feed-forward microwave amplifier. Here, we have presented closed form expressions, which can be used for predicting the IMR for the first and second adjacent channels. Fifth- and third-order nonlinear models have been used for the main and error amplifiers, respectively. The predicted values have been verified using ADS simulator and a MATLAB program. © The Institution of Engineering and Technology 2007  

    Optimization and simulation of micrometre-scale ring resonator modulators based on p-i-n diodes using firefly algorithm

    , Article Optik ; Volume 128 , 2017 , Pages 101-112 ; 00304026 (ISSN) Jafari, O ; Akbari, M ; Sharif University of Technology
    Elsevier GmbH  2017
    Abstract
    Field analysis of ring resonator modulators based on p-i-n diodes has been dissected in this paper. This analysis is performed in time and frequency domains. The conformal transformation method has been used for solving 3-D wave equation. Coupling coefficient between the ring and straight waveguides are obtained by developing the coupled-mode assumption. In the resonant wavelength of 1573.91 nm, a drop of more than 15 dB in frequency spectrum of the device has been observed. Time domain simulation shows that this modulator could support up to 0.4 Gb/s and up to 1.5 Gb/s for NRZ and RZ signals, respectively. Obtained simulation results in both domains have been properly complied with... 

    Optical modulation by conducting interfaces

    , Article IEEE Journal of Quantum Electronics ; Volume 49, Issue 7 , 2013 , Pages 607-616 ; 00189197 (ISSN) Karimi, F ; Khorasani, S. A ; Sharif University of Technology
    2013
    Abstract
    We analyze the interaction of a propagating guided electromagnetic wave with a quantum well embedded in a dielectric slab waveguide. First, we design a quantum well based on InAlGaAs compounds with the transition energy of 0.8 eV corresponding to a wavelength of 1.55 μm. By exploiting the envelope function approximation, we derive the eigenstates of electrons and holes and the transition dipole moments. Next, we calculate the electrical susceptibility of a three-level quantum system (as a model for the 2-D electron gas trapped in the waveguide), by using phenomenological optical Bloch equations. We show that the 2-D electron gas behaves as a conducting interface, whose conductivity can be... 

    Novel optical slow wave structure and surface electromagnetic wave coupler with conducting interfaces

    , Article Semiconductor Science and Technology ; Volume 19, Issue 7 , 2004 , Pages 890-896 ; 02681242 (ISSN) Mehrany, K ; Rashidian, B ; Sharif University of Technology
    2004
    Abstract
    Recently, a group of novel devices based on conducting interfaces has been proposed. These conducting interfaces can be implemented, for example, by using the inversion layer of MOS structures, trapped charges, or depletion layer charges. It has been shown that these structures can support surface electromagnetic waves. In this paper, the coupling of surface electromagnetic waves supported by conducting interfaces is first analysed. Next, by direct solution of Maxwell's equations and applying appropriate boundary conditions; exact analytical formulation of the dispersion equation has also been derived. Results driven by a coupled mode theory approach are justified by solving the exact... 

    Novel optical devices based on surface wave excitation at conducting interfaces

    , Article Semiconductor Science and Technology ; Volume 18, Issue 6 , 2003 , Pages 582-588 ; 02681242 (ISSN) Mehrany, K ; Khorasani, S ; Rashidian, B ; Sharif University of Technology
    2003
    Abstract
    In this paper, the excitation of surface waves in the presence of interface charges is discussed. Interface charges affect the dispersion of surface waves, and therefore they can be used in various applications such as optical modulators, switches, sensors and filters. These waves can be superior to surface plasmon waves since they are not lossy. The lossless property is satisfied in a limited range of millimetre waves to far infrared  

    Nonlinear frequency conversions via weak surface polaritonic wave breaking in a hybrid plasmonic waveguide

    , Article Optics Letters ; Volume 45, Issue 19 , 2020 , Pages 5432-5435 Asgarnezhad Zorgabad, S ; Sanders, B. C ; Sharif University of Technology
    OSA - The Optical Society  2020
    Abstract
    Material design and input field properties limit high-harmonic excitation efficiency of surface-plasmon polaritons (SPPs) in a nanoscopic device. We remedy these limitations by developing a concept for a plasmonic waveguide that exploits spatiotemporal control of a weak surface polaritonic field to create efficient four-wave mixing (FWM) and periodic phase singularities. Our configuration comprises four-level double 3-type atomic medium (43 As) doped in a lossless dielectric situated above a negative-index metamaterial (NIMM) layer. We report the coherent excitation and propagation of the multiple surface polaritonic shock waves (SWs) and establish the highly efficient frequency combs by... 

    Non-linear effects of intensity-modulated and directly detected optical links on receiving a linear frequency-modulated waveform

    , Article IET Optoelectronics ; Volume 5, Issue 6 , 2011 , Pages 255-260 ; 17518768 (ISSN) Shabani, M ; Akbari, M ; Sharif University of Technology
    Abstract
    Limitations imposed by the non-linearity of optical links, in the front end of a receiving array antenna, on the performance of a pulse compression radar are studied. Particularly linear frequency-modulated waveforms backscattered from a pair of targets are inspected. Inter-modulation and gain compression by noise are presented as two remarkable phenomena. For an interconnection of two dual-drive Mach-Zehnder modulators, the sensitivity of the compressed echo at the output of a matched filter receiver to certain tunable parameters is studied numerically. Finally, certain values of DC bias and phase shift between the modulators' electrodes are recommended  

    Mining DNA sequences based on spatially coded technique using spatial light modulator

    , Article IWCIT 2016 - Iran Workshop on Communication and Information Theory, 3 May 2016 through 4 May 2016 ; 2016 ; 9781509019229 (ISBN) Fazelian, M ; Abdollahramezani, S ; Bahrani, S ; Chizari, A ; Jamali, M. V ; Khorramshahi, P ; Tashakori, A ; Shahsavari, S ; Salehi, J. A ; Sharif University of Technology
    Institute of Electrical and Electronics Engineers Inc  2016
    Abstract
    In this paper, we present an optical computing method for string data alignment applicable to genome information analysis. By applying moire technique to spatial encoding patterns of deoxyribonucleic acid (DNA) sequences, association information of the genome and the expressed phenotypes could more effectively be extracted. Such moire fringes reveal occurrence of matching, deletion and insertion between DNA sequences providing useful visualized information for prediction of gene function and classification of species. Furthermore, by applying a cylindrical lens, a new technique is proposed to map two-dimensional (2D) association information to a one-dimensional (1D) column of pixels, where... 

    Minimum length modulator design with a graphene-based plasmonic waveguide

    , Article Applied Optics ; Volume 56, Issue 17 , 2017 , Pages 4926-4933 ; 1559128X (ISSN) Ghahri, M. R ; Faez, R ; Sharif University of Technology
    Abstract
    In this study, we simulated and analyzed a plasmonic waveguide modulator based on a single layer of graphene. It includes a graphene sheet, which sandwiches between two layers of silicon dioxide. Then, some gates are arranged on either side of the waveguide on a periodic structure. When an electric field is applied perpendicular to the waveguide plate, the Fermi level of graphene under the gates changes. Detailed analysis is performed by the method of lines based on Maxwell's equations along the propagation direction of the waveguide. Computation of the multi-gate device starts by examining the effect of the Fermi level. The transmission coefficient of the magnetic-field norms of the...