Loading...
Search for: limits-of-detection
0.013 seconds
Total 120 records

    Using commercial calcium ionophores to make lanthanide sensors

    , Article Journal of Radioanalytical and Nuclear Chemistry ; Volume 331, Issue 4 , 2022 , Pages 1751-1758 ; 02365731 (ISSN) Dehabadi, M ; Saveliev, M ; Legin, A ; Yaghmaei, S ; Babain, V ; Kirsanov, D ; Sharif University of Technology
    Springer Science and Business Media B.V  2022
    Abstract
    Developing chemical sensors with pronounced sensitivity towards lanthanides is a very important task related to the analytical control of industrial processes in nuclear industry. Various diamides of organic acids were shown to be very effective for such sensing applications when employed as ligands in plasticized polymeric membranes of potentiometric sensors. The chemical structures of some of these ligands (diamides of diglycolic acid) are very similar to those suggested in 80’s as Ca(II) ionophores that were later commercialized. We have hypothesized that commercial ionophores ETH 129 (N,N,N′,N′-tetra[cyclohexyl] diglycolic acid diamide) and ETH 5234... 

    Ultrasound-electrospinning-assisted fabrication and sensing evaluation of a novel membrane as ultrasensitive sensor for copper (II) ions detection in aqueous environment

    , Article Ultrasonics Sonochemistry ; Volume 44 , June , 2018 , Pages 152-161 ; 13504177 (ISSN) Gao, W ; Haratipour, P ; Rezaie Kahkha, M. R ; Tahvili, A ; Sharif University of Technology
    Elsevier B.V  2018
    Abstract
    The present study has reported an optimized fabrication and application of a novel PVA/TEOS/Schiff base nanofibers membrane as a highly sensitive copper (II) ions in aqueous environment. Here in, for first time, an ultrasound-assisted synthesized symmetric Schiff base has been immobilized on a hybrid polyvinyl alcohol (PVA) and TEOS using electrospinning technique for detection and filtration of copper ions. For this purpose, various working parameters were evaluated and finally the optimized nano fibers membrane was synthesized with 72 nm thickness and PVA/TEOS/Schiff base ratio of (wt%) 8:6:1. The optimized sample named PTLNFM has been employed successfully as an ultra sensitive... 

    Two-compartment processing as a tool to boost recombinant protein production

    , Article Engineering in Life Sciences ; Vol. 14, issue. 2 , March , 2014 , p. 118-128 Jazini, M ; Herwig, C ; Sharif University of Technology
    Abstract
    Pichia pastoris is used extensively as a production platform for many recombinant proteins. The dissolved oxygen (DO) is one of the most important factors influencing protein production. The influence of the DO on productivity has not been studied independent from the feed rate. In this work, various DO levels were investigated independent from the feed rate. The model system was recombinant P. pastoris under the control of methanol-induced alcohol oxidase promoter, which expressed HRP as the target protein. No significant effect was observed in terms of titer and specific productivity, which is a confirmation of the fact that the DO in a one-compartment system cannot boost productivity for... 

    Toward higher extraction and enrichment factors via a double-reservoirs microfluidic device as a micro-extractive platform

    , Article Journal of Separation Science ; Volume 42, Issue 18 , 2019 , Pages 2985-2992 ; 16159306 (ISSN) Rezvani, O ; Baraazandeh, M ; Bagheri, H ; Sharif University of Technology
    Wiley-VCH Verlag  2019
    Abstract
    In this study, firstly, a double-reservoir and switchable prototype of a micro-chip along with the respective holders were fabricated. A cyclic desorption process using microliter volume of organic solvent was adopted to prevent any outdoor contamination. As extractive phases, two identical sheets of electrospun polyamide/polypyrrole/titania nanofibers were synthesized using core–shell electro-spinning technique and utilized for determination of memantine in plasma samples. Field emission scanning electron microscopy images showed a high degree of porosity and homogeneity throughout the sheet structure. Also, energy dispersive X-ray analysis confirmed the presence of titania, while the... 

    The highly sensitive impedimetric biosensor in label free approach for hepatitis B virus DNA detection based on tellurium doped ZnO nanowires

    , Article Applied Physics A: Materials Science and Processing ; Volume 125, Issue 9 , 2019 ; 09478396 (ISSN) Khosravi Nejad, F ; Teimouri, M ; Jafari Marandi, S ; Shariati, M ; Sharif University of Technology
    Springer Verlag  2019
    Abstract
    The highly sensitive impedimetric biosensor in label free approach for hepatitis B virus DNA (HPV DNA) detection based on tellurium doped ZnO nanowires was fabricated. The NWs were grown by hybrid thin film oxidation in the physical vapor deposition (PVD) mechanism. The morphology characterization of the synthesized NWs was performed by field emission scanning electron microscopy (FESEM) and the images demonstrated that the diameter and the length of the materialized NWs were around 50 nm and several micrometers, respectively. The high-resolution transmission electron microscopy (HRTEM) image indicated that the fabricated NWs were crystalline and their phase characterization was validated by... 

    The geometrical characteristics of nickel-based metal organic framework on its entrapment capability

    , Article Journal of Chromatography A ; Volume 1610 , 2020 Javanmardi, H ; Abbasi, A ; Bagheri, H ; Sharif University of Technology
    Elsevier B.V  2020
    Abstract
    Here, a three dimensional nickel–based metal organic framework (MOF) was synthesized via solvothermal and room temperature protocols. In order to study the effects of the synthesis conditions on the physical properties such as pore sizes and shapes of the prepared MOFs, their extraction capabilities were examined. Both MOFs were characterized by Fourier transform infrared spectroscopy, powder X-ray diffraction, scanning electron microscopy, Brunauer–Emmett–Teller and thermogravimetric analyses. Brilliant properties such as porous structure, high surface area and considerable thermal stability make them reasonable candidates to be employed as efficient extractive phases. The efficiency of the... 

    The field effect transistor DNA biosensor based on ITO nanowires in label-free hepatitis B virus detecting compatible with CMOS technology

    , Article Biosensors and Bioelectronics ; Volume 105 , 15 May , 2018 , Pages 58-64 ; 09565663 (ISSN) Shariati, M ; Sharif University of Technology
    Elsevier Ltd  2018
    Abstract
    In this paper the field-effect transistor DNA biosensor for detecting hepatitis B virus (HBV) based on indium tin oxide nanowires (ITO NWs) in label free approach has been fabricated. Because of ITO nanowires intensive conductance and functional modified surface, the probe immobilization and target hybridization were increased strongly. The high resolution transmission electron microscopy (HRTEM) measurement showed that ITO nanowires were crystalline and less than 50 nm in diameter. The single-stranded hepatitis B virus DNA (SS-DNA) was immobilized as probe on the Au-modified nanowires. The DNA targets were measured in a linear concentration range from 1fM to 10 µM. The detection limit of... 

    Synthesis of green benzamide-decorated UiO-66-NH2 for biomedical applications

    , Article Chemosphere ; Volume 299 , 2022 ; 00456535 (ISSN) Rabiee, N ; Ghadiri, A. M ; Alinezhad, V ; Sedaghat, A ; Ahmadi, S ; Fatahi, Y ; Makvandi, P ; Saeb, M. R ; Bagherzadeh, M ; Asadnia, M ; Varma, R. S ; Lima, E. C ; Sharif University of Technology
    Elsevier Ltd  2022
    Abstract
    Metal-organic frameworks (MOFs) biocompatible systems can host enzymes/bacteria/viruses. Herein we synthesized a series of fatty acid amide hydrolase (FAAH)-decorated UiO-66-NH2 based on Citrus tangerine leaf extract for drug delivery and biosensor applications. Five chemically manipulated FAAH-like benzamides were localized on the UiO-66-NH2 surface with physical interactions. Comprehensive cellular and molecular analyses were conducted on HEK-293, HeLa, HepG2, PC12, MCF-7, and HT-29 cell lines (cytotoxicity assessment after 24 and 48 h). MTT results proved above 95 and 50% relative cell viability in the absence and presence of the drug, respectively. A complete targeted drug-releasing... 

    Super-porous semi-interpenetrating polymeric composite prepared in straw for micro solid phase extraction of antibiotics from honey, urine and wastewater

    , Article Journal of Chromatography A ; Volume 1631 , 2020 Asgari, S ; Bagheri, H ; Es-haghi, A ; Sharif University of Technology
    Elsevier B.V  2020
    Abstract
    A cryogel–based semi–interpenetrating polymer network (Cryo–SIPN) was prepared in which conductive polymers such as polyaniline (PANI) and polypyrrole (PPy) were formed within the super porous network of acrylic acid cryogel. For completion of cryo-polymerization, all the constituent solutions were severely mixed and placed into the plastic straws and kept at -20°C and then the synthesized cyrogels were cut into the 1-cm length and freeze dried after washing with water. The Cryo–SIPN polymeric composite was applied in micro solid phase extraction (µSPE) of some selected antibiotic residues from various samples. The µSPE method combined with a high performance liquid... 

    Substrate oscillations boost recombinant protein release from Escherichia coli

    , Article Bioprocess and Biosystems Engineering ; Volume 37, Issue 5 , May , 2014 , Pages 881-890 ; ISSN: 16157591 Jazini, M ; Herwig, C ; Sharif University of Technology
    Abstract
    Intracellular production of recombinant proteins in prokaryotes necessitates subsequent disruption of cells for protein recovery. Since the cell disruption and subsequent purification steps largely contribute to the total production cost, scalable tools for protein release into the extracellular space is of utmost importance. Although there are several ways for enhancing protein release, changing culture conditions is rather a simple and scalable approach compared to, for example, molecular cell design. This contribution aimed at quantitatively studying process technological means to boost protein release of a periplasmatic recombinant protein (alkaline phosphatase) from E. coli.... 

    SPR-based assay kit for rapid determination of Pb2+

    , Article Analytica Chimica Acta ; Volume 1220 , 2022 ; 00032670 (ISSN) Amirjani, A ; Kamani, P ; Madaah Hosseini, H. R ; Sadrnezhaad, S. K ; Sharif University of Technology
    Elsevier B.V  2022
    Abstract
    A recyclable optical nanosensor was developed by immobilizing L-tyrosine functionalized silver nanoparticles (AgNPs) on the polyethylene terephthalate (PET) substrate for rapid determination of Pb2+ ions. At first, the L-tyrosine functionalized AgNPs were assessed in the solution phase; the response time was lower than 15 s, and a limit of detection lower than 9 nM was obtained in the dynamic range of 1–1000 nM. For fabrication of the optical assay kit, the design of experiment (DOE) was used to optimize the immobilization efficiency of the nanoparticles on PET films by studying AgNO3 concentration and pH as two crucial parameters. The assay kit in optimal conditions showed a sharp localized... 

    Spectrophotometric determination of sulfide based on peroxidase inhibition by detection of purpurogallin formation

    , Article Ecotoxicology and Environmental Safety ; Volume 91 , 2013 , Pages 117-121 ; 01476513 (ISSN) Ghadiri, M ; Kariminia, H. R ; Roosta Azad, R ; Sharif University of Technology
    2013
    Abstract
    This paper presents a new method for spectrophotometirc detection of sulfide applying fungal peroxidase immobilized on sodium alginate. The sensing scheme was based on decrease of the absorbance of the orange compound, purpurogallin produced from pyrogallol and H2O2 as substrates, due to the inhibition of peroxidase by sulfide. Absorbance of purpurogallin was detected at 420nm by using a spectrophotometer. The proposed method could successfully detect the sulfide in the concentration range of 0.6-7.0μM with a detection limit of 0.4μM. The kinetic parameters of Michaelis-Menten with and without sulfide were also calculated. Possible inhibition mechanism of peroxidase by sulfide was deduced... 

    Sol-gel-based silver nanoparticles-doped silica - Polydiphenylamine nanocomposite for micro-solid-phase extraction

    , Article Analytica Chimica Acta ; Volume 886 , July , 2015 , Pages 56-65 ; 00032670 (ISSN) Bagheri, H ; Banihashemi, S ; Sharif University of Technology
    Elsevier  2015
    Abstract
    A nanocomposite of silica-polydiphenylamine doped with silver nanoparticles (Ag-SiO2-PDPA) was successfully synthesized by the sol-gel process. For its preparation, PDPA was mixed with butanethiol capped Ag nanoparticles (NPs) and added to the silica sol solution. The Ag NPs were stabilized as a result of their adsorption on the SiO2 spheres. The surface characteristic of nanocomposite was investigated using scanning electron microscopy (SEM). In this work the Ag-SiO2-PDPA nanocomposite was employed as an efficient sorbent for micro-solid-phase extraction (μ-SPE) of some selected pesticides. An amount of 15 mg of the prepared sorbent was used to extract and... 

    Simultaneous detection and identification of thiometon, phosalone, and prothioconazole pesticides using a nanoplasmonic sensor array

    , Article Food and Chemical Toxicology ; Volume 151 , 2021 ; 02786915 (ISSN) Koushkestani, M ; Abbasi Moayed, S ; Ghasemi, F ; Mahdavi, V ; Hormozi Nezhad, M. R ; Sharif University of Technology
    Elsevier Ltd  2021
    Abstract
    In this work, a colorimetric sensor array has been designed for the identification and discrimination of thiometon (TM) and phosalone (PS) as organophosphate pesticides and prothioconazole (PC) as a triazole pesticide. For this purpose, two different plasmonic nanoparticles including unmodified gold nanoparticles (AuNPs) and unmodified silver nanoparticles (AgNPs) were used as sensing elements. The principle of the proposed strategy relied on the aggregation AuNPs and AgNPs through the cross-reactive interaction between the target pesticides and plasmonic nanoparticles. Therefore, these aggregation-induced UV–Vis spectra changes were utilized to discriminate the target pesticides with the... 

    Simple and rapid detection of L-dopa based on in situ formation of polylevodopa nanoparticles

    , Article Sensors and Actuators, B: Chemical ; Volume 243 , 2017 , Pages 715-720 ; 09254005 (ISSN) Hormozi Nezhad, M. R ; Moslehipour, A ; Bigdeli, A ; Sharif University of Technology
    Elsevier B.V  2017
    Abstract
    Levodopa [L-3, 4-dihydroxyphenylalanine, or L-DOPA] is an important neurotransmitter used for the treatment of neural disorders such as Parkinson's disease. Abnormal L-Dopa concentrations in biological fluids can be used for the evaluation of such diseases. In this work, a rapid and sensitive method for L-DOPA detection has been reported which is based on in situ formation of polylevodopa nanoparticles. Under alkaline conditions, L-DOPA is spontaneously oxidized to its quinone derivative and shows fluorescence properties. The fluorescence signal of the oxidation product has been monitored and used for the determination of L-DOPA in the presence of dopamine, uric acid, ascorbic acid and other... 

    Silver nanoparticles-polyaniline nanocomposite for microextraction in packed syringe

    , Article Chromatographia ; Vol. 77, issue. 5-6 , 2014 , pp. 397-403 ; ISSN: 00095893 Bagheri, H ; Banihashemi, S ; Sharif University of Technology
    Abstract
    A rapid, convenient and reliable method for microextraction in packed syringe (MEPS) of the loop diuretic furosemide (FUR) in urine along with high-performance liquid chromatography (HPLC) was developed. A nanocomposite based on silver nanoparticles/polyaniline (Ag-NPs/PANI) was synthesized and used as the MEPS packing material. This nanocomposite was prepared conveniently using interfacial polymerization without the need for any templates or functional dopants. The feasibility of the synthesized nanocomposites was examined by isolation of FUR from diluted urine samples. After extraction, the analyte was desorbed by 200 μL of methanol. It was then dried and the residue was dissolved in 30 μL... 

    Silica aerogel coated on metallic wire by phase separation of polystyrene for in–tube solid phase microextraction

    , Article Journal of Chromatography A ; Volume 1500 , 2017 , Pages 69-75 ; 00219673 (ISSN) Baktash, M. Y ; Bagheri, H ; Sharif University of Technology
    Elsevier B.V  2017
    Abstract
    In this research, an attempt was made toward synthesizing a sol–gel–based silica aerogel and its subsequent coating on a copper wire by phase separation of polystyrene. Adaption of this new approach enabled us to coat the metallic wire with powder materials. The use of this method for coating, led to the formation of a porous and thick structure of silica aerogel. The coated wire was placed in a needle and used as the sorbent for in–tube solid phase microextraction of chlorobenzenes (CBs). The superhydrophobicity of sorbent on extraction efficiency was investigated by using different ratios of tetraethylorthosilicate/methyltrimethoxysilane. The surface coated with the prepared silica aerogel... 

    Selective colorimetric detection of pentaerythritol tetranitrate (PETN) using arginine-mediated aggregation of gold nanoparticles

    , Article Spectrochimica Acta - Part A: Molecular and Biomolecular Spectroscopy ; Volume 228 , 2020 Taefi, Z ; Ghasemi, F ; Hormozi Nezhad, M. R ; Sharif University of Technology
    Elsevier B.V  2020
    Abstract
    Detection of pentaerythritol tetranitrate (PETN) as an explosive has been of great interest because of public safety and military concerns. Here, we have presented a simple, selective and sensitive colorimetric method for direct detection of PETN. The gold nanoparticles (AuNPs) were first exposed to arginine which has primary amines in its structure. Electron deficient –NH2 groups from arginine could strongly interact with –NO2 groups of PETN as electron donors. Hydrogen bonding happens between the –NO2 group of PETN and –NH2 group of arginine molecules. Therefore, selective aggregation of AuNPs happened because of the donor-acceptor and hydrogen bonding interactions. Due to the aggregation,... 

    Second-order calibration for simultaneous determination of pharmaceuticals in water samples by solid-phase extraction and fast high-performance liquid chromatography with diode array detector

    , Article Chemometrics and Intelligent Laboratory Systems ; Vol. 137, issue , 2014 , pp. 146-154 ; ISSN: 01697439 Akvan, N ; Parastar, H ; Sharif University of Technology
    Abstract
    A fast high-performance liquid chromatography-diode array detection (HPLC-DAD) approach combined to solid phase extraction (SPE) as a pre-concentration step is developed for simultaneous determination of five selected pharmaceuticals (carbamazepine, naproxen, diclofenac, gemfibrozil and mefenamic acid) in water samples. The effective factors on the efficiency of SPE procedure are optimized using faced-centered central composite design (FCCD). In addition, multi-response optimization by using Derringer's desirability function is used to find the optimum experimental conditions for extraction of analytes from well and river waters. Due to the complexity of water matrices and the presence of... 

    Roles of metal, ligand and post synthetic modification on metal organic frameworks to extend their hydrophobicity and applicability toward ultra–trace determination of priority organic pollutants

    , Article Analytica Chimica Acta ; Volume 1125 , 2020 , Pages 231-246 Javanmardi, H ; Abbasi, A ; Bagheri, H ; Sharif University of Technology
    Elsevier B.V  2020
    Abstract
    Implementation of metal organic frameworks (MOFs) in the separation science has attracted many researchers attention. In this study, the role of metal, ligand, the reaction condition and modification on the extraction efficiency of some MOFs was investigated. Among the prevalent reported MOFs, some members of the MIL and MOF–5 families were chosen, and eleven MOF–based sorbents were prepared by changing the metal and ligand type, reaction condition, and/or functionality through post synthetic modification (PSM). MIL–101 and MIL–101–NH2 based structures were initially synthesized based on the chromium and iron salts. Also, three zinc–based structures including MOF–5, [NH2(CH3)2]2...