Loading...
Search for: linear-range
0.005 seconds

    Electrodeposition and electrocatalytic properties of Pt/Ni-Co nanowires for non-enzymatic glucose detection

    , Article Journal of Alloys and Compounds ; Volume 554 , 2013 , Pages 169-176 ; 09258388 (ISSN) Mahshid, S. S ; Mahshid, S ; Dolati, A ; Ghorbani, M ; Yang, L ; Luo, S ; Cai, Q ; Sharif University of Technology
    2013
    Abstract
    A nanowire arrays system consisting of an ordered configuration of Pt, Ni and Co was constructed in single-bath solution through pulse electrodeposition. This structure was evaluated as a potential amperometric non-enzymatic sensor to detect glucose in alkaline solution. We observed a strong and fast amperometric response at low applied potential of 0.4 V vs. SCE over linear ranges of 0-0.2 mM and 0.2-8 mM glucose with sensitivities of 1125 and 333 μA mM-1 cm-2, respectively. We also observed a low detection limit for glucose of 1 μM. Correlation of the electronic and geometric modifications with the electrochemical performance characteristics enhanced catalytic activity of the electrode by... 

    Ionic liquid/graphene oxide as a nanocomposite for improving the direct electrochemistry and electrocatalytic activity of glucose oxidase

    , Article Journal of Solid State Electrochemistry ; Volume 17, Issue 1 , January , 2013 , Pages 183-189 ; 14328488 (ISSN) Tasviri, M ; Ghasemi, S ; Ghourchian, H ; Gholami, M. R ; Sharif University of Technology
    2013
    Abstract
    By combination of 1-ethyl-3-methyl immidazolium ethyl sulfate as a typical room temperature ionic liquid (IL) and graphene oxide (GO) nanosheets, a nanocomposite was introduced for improving the direct electrochemistry and electrocatalytic activity of glucose oxidase (GOx). The enzyme on the IL-GO-modified glassy carbon electrode exhibited a quasireversible cyclic voltammogram corresponding to the flavine adenine dinucleotide/FADH2 redox prosthetic group of GOx. At the scan rate of 100 mV s-1, the enzyme showed a peak-to-peak potential separation of 82 mV and the formal potential of -463 mV (vs Ag/AgCl in 0.1 M phosphate buffer solution, pH 7.0). The kinetic parameters of the charge transfer... 

    Horseradish peroxidase immobilization on amine functionalized carbon nanotubes: Direct electrochemistry and bioelectrocatalysis

    , Article Progress in Reaction Kinetics and Mechanism ; Volume 37, Issue 2 , May , 2012 , Pages 161-172 ; 14686783 (ISSN) Tasviri, M ; Ghourchian, H ; Gholami, M. R ; Rafiee Pour, H. A ; Sharif University of Technology
    2012
    Abstract
    Horseradish peroxidase (HRP) was successfully immobilized on amine functionalized TiO 2-coated multiwalled carbon nanotubes (NH 2-TiO 2-CNTs) by a convenient and efficient method. Electrochemical impedance spectroscopy, cyclic voltammetry and amperometry were applied to characterize the HRP/NH 2-TiO 2-CNT nano-composite. These techniques showed that the NH 2-TiO 2-CNTs greatly enhance the electron transfer between HRP and the modified electrode. Owing to the redox reaction of the electroactive centre of HRP, the HRP/NH 2-TiO 2-CNTs modified electrode exhibited a pair of quasi-reversible peaks with a peak-to-peak separation (ΔE p) of 70.6mV and a formal potential (E 0′) of -367.65mV (versus... 

    Fabrication of a modified electrode based on Fe3 O4 NPs/MWCNT nanocomposite: Application to simultaneous determination of guanine and adenine in DNA

    , Article Bioelectrochemistry ; Volume 86 , 2012 , Pages 78-86 ; 15675394 (ISSN) Shahrokhian, S ; Rastgar, S ; Amini, M. K ; Adeli, M ; Sharif University of Technology
    Abstract
    Multi-walled carbon nanotubes decorated with Fe 3O 4 nanoparticles (Fe 3O 4NPs/MWCNT) were prepared and used to construct a novel biosensor for the simultaneous detection of adenine and guanine. The direct electro-oxidation of adenine and guanine on the modified electrode were investigated by linear sweep voltammetry. The results indicate a remarkable increase in the oxidation peak currents together with negative shift in the oxidation peak potentials for both adenine and guanine, in comparison to the bare glassy carbon electrode (GCE). The surface morphology and nature of the composite film deposited on GCE were characterized by transmission electron microscopy, atomic force microscopy,... 

    Amperometric sulfide detection using Coprinus cinereus peroxidase immobilized on screen printed electrode in an enzyme inhibition based biosensor

    , Article Biosensors and Bioelectronics ; Volume 35, Issue 1 , 2012 , Pages 297-301 ; 09565663 (ISSN) Savizi, I. S. P ; Kariminia, H. R ; Ghadiri, M ; Roosta Azad, R ; Sharif University of Technology
    2012
    Abstract
    In the present work, an amperometric inhibition biosensor for the determination of sulfide has been fabricated by immobilizing Coprinus cinereus peroxidase (CIP) on the surface of screen printed electrode (SPE). Chitosan/acrylamide was applied for immobilization of peroxidase on the working electrode. The amperometric measurement was performed at an applied potential of -150. mV versus Ag/AgCl with a scan rate of 100. mV in the presence of hydroquinone as electron mediator and 0.1. M phosphate buffer solution of pH 6.5. The variables influencing the performance of sensor including the amount of substrate, mediator concentration and electrolyte pH were optimized. The determination of sulfide... 

    Mediator-less highly sensitive voltammetric detection of glutamate using glutamate dehydrogenase/vertically aligned CNTs grown on silicon substrate

    , Article Biosensors and Bioelectronics ; Volume 31, Issue 1 , 2012 , Pages 110-115 ; 09565663 (ISSN) Gholizadeh, A ; Shahrokhian, S ; Iraji zad, A ; Mohajerzadeh, S ; Vosoughi, M ; Darbari, S ; Sanaee, Z ; Sharif University of Technology
    Abstract
    A sensitive glutamate biosensor is prepared based on glutamate dehydrogenase/vertically aligned carbon nanotubes (GLDH, VACNTs). Vertically aligned carbon nanotubes were grown on a silicon substrate by direct current plasma enhanced chemical vapor deposition (DC-PECVD) method. The electrochemical behavior of the synthesized VACNTs was investigated by cyclic voltammetry and electrochemical impedance spectroscopic methods. Glutamate dehydrogenase covalently attached on tip of VACNTs. The electrochemical performance of the electrode for detection of glutamate was investigated by cyclic and differential pulse voltammetry. Differential pulse voltammetric determinations of glutamate are performed... 

    Electrochemical preparation of over-oxidized polypyrrole/multi-walled carbon nanotube composite on glassy carbon electrode and its application in epinephrine determination

    , Article Electrochimica Acta ; Volume 57, Issue 1 , 2011 , Pages 132-138 ; 00134686 (ISSN) Shahrokhian, S ; Saberi, R. S ; Sharif University of Technology
    Abstract
    A composite film constructed of surfactant doped over-oxidized polypyrrole and multi-walled carbon nanotube was prepared on the surface of glassy carbon electrode by the electro-polymerization method. Surface characterization of the modified electrode was performed by scanning electron microscopy, cyclic voltammetry and electrochemical impedance spectrometry. The investigations have been proved that the over-oxidation of the modifier film resulted in a porous thin layer that improves the interlayer diffusion mechanism for the electroactive species. On the other hand, the negative charge density on the surface of the electrode excludes the negative analytes (e.g. ascorbate and Fe(CN)63?/4?)... 

    Template-based electrodeposition of Pt/Ni nanowires and its catalytic activity towards glucose oxidation

    , Article Electrochimica Acta ; Volume 58, Issue 1 , 2011 , Pages 551-555 ; 00134686 (ISSN) Mahshid, S. S ; Mahshid, S ; Dolati, A ; Ghorbani, M ; Yang, L ; Luo, S ; Cai, Q ; Sharif University of Technology
    2011
    Abstract
    An electro-catalysis non-enzymatic electrode is proposed based on alloyed Pt/Ni nanowire arrays (NWAs) for the detection of glucose. The Pt/Ni NWAs were prepared by pulse electrodeposition of Pt and Ni within a nano-pore polycarbonate (PC) membrane followed by a chemical etching of the membrane. The electrode structure is characterized by scanning electron microscopy (SEM) and transmission electron microscopy (TEM). The resulting Pt/Ni NWAs electrode shows high electrocatalytic activities towards the oxidation of glucose in alkaline solution. Consequently, a sensitive amperometric detection of glucose is achieved under 0.45 V vs. SCE with a low detection limit of 1.5 μM within a wide linear... 

    The Pt/Ni modified TiO 2 nanotubes and its catalytic activity toward glucose

    , Article ECS Transactions, 1 May 2011 through 6 May 2011 ; Volume 35, Issue 35 , May , 2011 , Pages 63-69 ; 19385862 (ISSN) ; 9781607682950 (ISBN) Mahshid, S. S ; Mahshid, S ; Ghahremaninezhad, A ; Dolati, A ; Ghorbani, M ; Luo, S ; Yang, L ; Cai, Q ; Sharif University of Technology
    2011
    Abstract
    The catalytic activity of Pt/Ni/TiO 2 nanotubes electrode toward glucose has been studied. Fabrication of Pt/Ni nanostructures was done in a single-bath solution through electrochemical pulse method by changing the deposition potential between -0.3 and -4 V vs. SCE, respectively. The resulting modified electrode represented high conductivity due to the effective presence of metallic components and uniform surface area caused by dispersion of Pt and Ni nanostructures. The scanning electron microscopy images also confirmed that a large amount of metals colonies were well-dispersed at the edge of the TiO 2 nanotubes. In addition, the Pt/Ni TiO 2 nanotubes modified electrode exhibited an... 

    A well-dispersed Pt/Ni/TiO 2 nanotubes modified electrode as an amperometric non-enzymatic glucose biosensor

    , Article Sensor Letters ; Volume 9, Issue 5 , October , 2011 , Pages 1598-1605 ; 1546198X (ISSN) Mahshid, S. S ; Luo, S ; Yang, L ; Mahshid, S ; Dolati, A ; Ghorbani, M ; Cai, Q ; Sharif University of Technology
    2011
    Abstract
    In this study a novel Pt/Ni nanostructure consisting of nano-bushes and nanocubes was fabricated onto TiO 2 nanotubes. The scanning electron microscopy images showed that a large amount of well-dispersed nano-architectures had uniformly covered all over the surface which made an electrode with high surface area. It was obviously seen that the nanocube structures mainly consists of Ni had been grown on top of each other while the Pt colonies represented bush-like structures. As a non-enzymatic glucose biosensor, the Pt/Ni TiO 2 nanotubes modified electrode exhibited an excellent performance. The proposed biosensor had two linear ranges for detection of glucose from 0 to 0.12 mM (correlation... 

    Electrocatalytic determination of sumatriptan on the surface of carbon-paste electrode modified with a composite of cobalt/Schiff-base complex and carbon nanotube

    , Article Bioelectrochemistry ; Volume 81, Issue 2 , 2011 , Pages 81-85 ; 15675394 (ISSN) Amiri, M ; Pakdel, Z ; Bezaatpour, A ; Shahrokhian, S ; Sharif University of Technology
    2011
    Abstract
    The electrochemical oxidation of sumatriptan on the surface of carbon paste electrode modified with multi-walled carbon nanotube and cobalt methyl-salophen complex is studied by using cyclic voltammetry and polarization studies. The results indicate that the drug is irreversibly oxidized in a one electron oxidation mechanism. It was found that the peak potential shifted negatively with increasing pH, confirms that H + participate in the oxidation process. The electrode is shown to be very effective for the detection of sumatriptan in the presence of other biological reductant compounds. The prepared modified electrode exhibits a very good resolution between the voltammetric peaks of... 

    Application of pyrolytic graphite modified with nano-diamond/graphite film for simultaneous voltammetric determination of epinephrine and uric acid in the presence of ascorbic acid

    , Article Electrochimica Acta ; Volume 55, Issue 28 , 2010 , Pages 9090-9096 ; 00134686 (ISSN) Shahrokhian, S ; Khafaji, M ; Sharif University of Technology
    2010
    Abstract
    A novel modified pyrolytic graphite electrode with nano-diamond/graphite was fabricated. The electrochemical response characteristics of the modified electrode toward the epinephrine (EN) and uric acid (UA) were studied by means of cyclic and linear sweep voltammetry. The structural morphology and thickness of the film was characterized by SEM technique. The prepared electrode showed an excellent catalytic activity in the electrochemical oxidation of EN and UA, leading to remarkable enhancements in the corresponding peak currents and lowering the peak potentials. The prepared modified electrode acts as a highly sensitive sensor for simultaneous determination of EN and UA in the presence of... 

    Optimization of dispersive liquid-liquid microextraction and improvement of detection limit of methyl tert-butyl ether in water with the aid of chemometrics

    , Article Journal of Chromatography A ; Volume 1217, Issue 45 , November , 2010 , Pages 7017-7023 ; 00219673 (ISSN) Karimi, M ; Sereshti, H ; Samadi, S ; Parastar, H ; Sharif University of Technology
    2010
    Abstract
    Dispersive liquid-liquid microextraction (DLLME) coupled with gas chromatography-mass spectrometry-selective ion monitoring (GC-MS-SIM) was applied to the determination of methyl tert-butyl ether (MTBE) in water samples. The effect of main parameters affecting the extraction efficiency was studied simultaneously. From selected parameters, volume of extraction solvent, volume of dispersive solvent, and salt concentration were optimized by means of experimental design. The statistical parameters of the derived model were R 2=0.9987 and F=17.83. The optimal conditions were 42.0μL for extraction solvent, 0.30mL for disperser solvent and 5% (w/v) for sodium chloride. The calibration linear range... 

    Selective voltammetric determination of d-penicillamine in the presence of tryptophan at a modified carbon paste electrode incorporating TiO2 nanoparticles and quinizarine

    , Article Journal of Electroanalytical Chemistry ; Volume 644, Issue 1 , Jan , 2010 , Pages 1-6 ; 15726657 (ISSN) Mazloum Ardakani, M ; Beitollahi, H ; Taleat, Z ; Naeimi, H ; Taghavinia, N ; Sharif University of Technology
    2010
    Abstract
    A carbon paste electrode (CPE) chemically modified with TiO2 nanoparticles and quinizarine (QZ) was used as a selective electrochemical sensor for the simultaneous determination of minor amounts of d-penicillamine (D-PA) and tryptophan (Trp). This modified electrode showed very efficient electrocatalytic activity for anodic oxidation of both d-PA and Trp. Substantial decreases of anodic overpotentials for both compounds made this analysis possible. Results of square wave voltammetry (SWV) using this modified electrode showed two well-resolved anodic waves for the oxidation of d-PA and Trp, which makes the simultaneous determination of both compounds possible. The peak potential for the... 

    Simultaneous voltammetric determination of tramadol and acetaminophen using carbon nanoparticles modified glassy carbon electrode

    , Article Electrochimica Acta ; Volume 55, Issue 8 , 2010 , Pages 2752-2759 ; 00134686 (ISSN) Ghorbani Bidkorbeh, F ; Shahrokhian, S ; Mohammadi, A ; Dinarvand, R ; Sharif University of Technology
    2010
    Abstract
    A sensitive and selective electrochemical sensor was fabricated via the drop-casting of carbon nanoparticles (CNPs) suspension onto a glassy carbon electrode (GCE). The application of this sensor was investigated in simultaneous determination of acetaminophen (ACE) and tramadol (TRA) drugs in pharmaceutical dosage form and ACE determination in human plasma. In order to study the electrochemical behaviors of the drugs, cyclic and differential pulse voltammetric studies of ACE and TRA were carried out at the surfaces of the modified GCE (MGCE) and the bare GCE. The dependence of peak currents and potentials on pH, concentration and the potential scan rate were investigated for these compounds... 

    Optimization of Tribenuron-methyl determination by differential pulse polarography using experimental design

    , Article Analytical Methods ; Volume 2, Issue 1 , 2010 , Pages 41-48 ; 17599660 (ISSN) Ahmadi, S ; Ghassempour, A ; Fakhari, A. R ; Jalali Heravi, M ; Aboul Enein, H. Y ; Sharif University of Technology
    Abstract
    Differential pulse polarography (DPP) was applied for the determination of the herbicide Tribenuron-methyl (TBM). This is a first study for various parameters affecting the reduction peak current were simultaneously optimized using experimental design and these results are different from other reports. The effect of factors such as voltage step, voltage step time, pulse amplitude, pulse time, sample pH, concentration of the supporting electrolyte and the mercury drop size were assessed by means of a (27-2) fractional factorial design. It was found that the effects and interactions of four out of seven factors were significant. Consequently, a central composite design (CCD) with four factors,... 

    A new strategy to design colorful ratiometric probes and its application to fluorescent detection of Hg(II)

    , Article Sensors and Actuators, B: Chemical ; Volume 259 , 2018 , Pages 894-899 ; 09254005 (ISSN) Ghasemi, F ; Hormozi Nezhad, M. R ; Mahmoudi, M ; Sharif University of Technology
    Elsevier B.V  2018
    Abstract
    A new strategy has been proposed to expand color-tunability of ratiometric fluorescent probes. It was shown that the combination of blue emissive color (as an internal standard) and yellow emissive color (as a probe) is an efficient way to create an extensive color range in ratiometric probes. However, due to the nature of the interaction between the analyte and the probe in terms of fluorescence quenching, occurance of the redshift in the emission is the major provision of such a probe. Our developed ratiometric fluorescence probe consists of blue emissive carbon dots (BCDs) and thioglycolic acid (TGA)-capped yellow emissive cadmium telluride (CdTe) quantum dots (YQDs). The ratiometric... 

    Nonenzymatic sweat-based glucose sensing by flower-like au nanostructures/graphene oxide

    , Article ACS Applied Nano Materials ; Volume 5, Issue 9 , 2022 , Pages 13361-13372 ; 25740970 (ISSN) Asen, P ; Esfandiar, A ; Kazemi, M ; Sharif University of Technology
    American Chemical Society  2022
    Abstract
    The development of a nonenzymatic glucose sensor working in real human body conditions through a noninvasive sampling approach has attracted considerable attention. Hence, this work focuses on the development of a new nonenzymatic glucose sensor based on flower-like Au nanostructures (F-AuNTs) and graphene oxide (GO) as a supporting matrix. The F-AuNTs-GO hybrid was synthesized by simple drop casting of the GO suspension onto the graphite sheet (GS) followed by electrodeposition of F-AuNTs on GO nanosheets at 3 V in a two-electrode system. The electrocatalytic activity of the F-AuNTs-GO/GS sensor toward glucose electrooxidation was initially evaluated in a 0.1 M buffer phosphate solution (pH...