Loading...
Search for: low-reynolds-number
0.01 seconds
Total 50 records

    Optimal motion control of three-sphere based low-Reynolds number swimming microrobot

    , Article Robotica ; Volume 40, Issue 5 , 2022 , Pages 1257-1273 ; 02635747 (ISSN) Nejat Pishkenari, H ; Mohebalhojeh, M ; Sharif University of Technology
    Cambridge University Press  2022
    Abstract
    Microrobots with their promising applications are attracting a lot of attention currently. A microrobot with a triangular mechanism was previously proposed by scientists to overcome the motion limitations in a low-Reynolds number flow; however, the control of this swimmer for performing desired manoeuvres has not been studied yet. Here, we have proposed some strategies for controlling its position. Considering the constraints on arm lengths, we proposed an optimal controller based on quadratic programming. The simulation results demonstrate that the proposed optimal controller can steer the microrobot along the desired trajectory as well as minimize fluctuations of the actuators length. ©... 

    Experimental study of continuous H2/Air rotating detonations

    , Article Combustion Science and Technology ; Volume 194, Issue 3 , 2022 , Pages 449-463 ; 00102202 (ISSN) Dehghan Nezhad, S ; Fahim, M ; Farshchi, M ; Sharif University of Technology
    Taylor and Francis Ltd  2022
    Abstract
    An experimental study of a lab scale rotating detonation combustor (RDC) has been conducted to identify and classify its modes of operation under different feeding conditions. The chamber uses air as oxidizer and hydrogen as fuel. The stability diagram of the RDC has been determined based on the detonation chamber Reynolds number and reactants mixture equivalence ratio values. The Reynolds number is based on the air volume flow rate, chamber annulus size, and the reactants mixture feeding slot area. Hence the effects of geometrical parameters and operational parameters on the detonation wave stability can be presented in a single stability map. This diagram identifies different zones in... 

    Magnetic-induced nanoparticles and rotary tubes for energetic and exergetic performance improvement of compact heat exchangers

    , Article Powder Technology ; Volume 377 , 2021 , Pages 396-414 ; 00325910 (ISSN) Bezaatpour, M ; Rostamzadeh, H ; Bezaatpour, J ; Ebadollahi, M ; Sharif University of Technology
    Elsevier B.V  2021
    Abstract
    In the present study, the effects of rotary tubes and magnetic-induced nanofluid on heat transfer characteristics of a compact heat exchanger are individually investigated. Two-phase Eulerian model is employed to predict the hydrothermal and entropic characteristics of Fe3O4/water ferrofluid in the heat exchanger. Results indicate that utilizing each rotary tubes and magnetic field method can improve the energy and exergy efficiencies of the compact heat exchanger under specific circumstances by forming different types of secondary flow. It is found that employing each method individually can increase the maximum heat transfer rate by more than 60%. In comparison with methods like passive... 

    Dynamics and control of a novel microrobot with high maneuverability

    , Article Robotica ; Volume 39, Issue 10 , 2021 , Pages 1729-1738 ; 02635747 (ISSN) Esfandbod, A ; Nejat Pishkenari, H ; Meghdari, A ; Sharif University of Technology
    Cambridge University Press  2021
    Abstract
    In this study, we introduce a novel three-dimensional micro-scale robot capable of swimming in low Reynolds number. The proposed robot consists of three rotating disks linked via three perpendicular adjustable rods, actuated by three rotary and three linear motors, respectively. The robot mechanism has an important property which makes it superior to the previously designed micro swimmers. In fact, our goal is designing a micro swimmer which its controllability matrix has full rank and hence it will be capable to perform any desired maneuver in space. After introducing the mechanism and derivation of the dynamical equations of motion, we propose a control method to steer the robot to the... 

    Experimental investigation of the effect of active flow control on the wake of a wind turbine blade

    , Article Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science ; Volume 235, Issue 22 , 2021 , Pages 6122-6138 ; 09544062 (ISSN) Maleki, G ; Davari, A. R ; Soltani, M. R ; Sharif University of Technology
    SAGE Publications Ltd  2021
    Abstract
    An extensive experimental investigation was conducted to study the effects of Dielectric Barrier Discharge (DBD), on the flow field of an airfoil at low Reynolds number. The DBD was mounted near the leading edge of a section of a wind turbine blade. It is believed that DBD can postpone the separation point on the airfoil by injecting momentum to the flow. The effects of steady actuations on the velocity profiles in the wake region have been investigated. The tests were performed at α = 4 to 36 degrees i.e. from low to deep stall angles of attack regions. Both surface pressure distribution and wake profile show remarkable improvement at high angles of attack, beyond the static stall angle of... 

    Dynamic modeling and optimal control of a novel microswimmer with gimbal based disks

    , Article Robotica ; Volume 39, Issue 8 , 2021 , Pages 1468-1484 ; 02635747 (ISSN) Nickandish, A ; Pishkenari, H. N ; Sharif University of Technology
    Cambridge University Press  2021
    Abstract
    We have introduced a new low-Reynolds-number microrobot with high 3D maneuverability. Our novel proposed microrobot has a higher rank of the controllability matrix with respect to the previous microswimmers which makes it capable of performing complex motions in space. In this study, governing equations of the microswimmer's motion have been derived and simulated. Subsequently, we have proposed a cascade optimal control technique to control the swimmer trajectory. In the proposed control scheme, the actuation is provided in a way that an exponential stability on the system trajectory error as well as minimum fluctuations of control signals are achieved. © The Author(s), 2021. Published by... 

    Controlled swarm motion of self-propelled microswimmers for energy saving

    , Article Journal of Micro-Bio Robotics ; 2021 ; 21946418 (ISSN) Abdi, H ; Nejat Pishkenari, H ; Sharif University of Technology
    Springer Science and Business Media Deutschland GmbH  2021
    Abstract
    Swarm motion is an amazing collective behavior in nature for energy saving. Inspiring this natural phenomenon in microorganisms’ swimming, we have proposed a motion strategy for a swarm of microrobots to reduce their energy consumption during path tracking. The investigated microrobot is an artificial Self-Propelled Microswimmer (SPM) with high maneuverability at low Reynolds number flow (Re ≪ 1). In this study, we have demonstrated that forming a swarm behavior with minimum energy consumption requires the microswimmers to be close enough to each other, since at small distances the hydrodynamic interactions of microswimmers reduce their energy consumption. Moreover, we also showed that... 

    Investigation of time-frequency analysis and transitional boundary layer over a pitching airfoil

    , Article Scientia Iranica ; Volume 28, Issue 2 B , 2021 , Pages 860-876 ; 10263098 (ISSN) Akhlaghi, H ; Soltani, M. R ; Maghrebi, M. J ; Sharif University of Technology
    Sharif University of Technology  2021
    Abstract
    Transitional boundary layer over a pitching airfoil at low Reynolds number (Re = 2:7 × 105) is experimentally investigated using space-frequency and time-frequency analyses of hot- film signals. Boundary layer events are visualized based on the space-frequency and time-frequency plots. The precursor phenomenon for turbulent and fully separated flows is presented based on the time-frequency analysis. A new technique based on time-frequency analysis of hot- film signals is introduced to measure the transition onset and relaminarization locations. This technique functions based on the analysis of high-frequency disturbances of the measured data. Significant attention has been drawn to the... 

    Controlled swarm motion of self-propelled microswimmers for energy saving

    , Article Journal of Micro-Bio Robotics ; 2021 ; 21946418 (ISSN) Abdi, H ; Nejat Pishkenari, H ; Sharif University of Technology
    Springer Science and Business Media Deutschland GmbH  2021
    Abstract
    Swarm motion is an amazing collective behavior in nature for energy saving. Inspiring this natural phenomenon in microorganisms’ swimming, we have proposed a motion strategy for a swarm of microrobots to reduce their energy consumption during path tracking. The investigated microrobot is an artificial Self-Propelled Microswimmer (SPM) with high maneuverability at low Reynolds number flow (Re ≪ 1). In this study, we have demonstrated that forming a swarm behavior with minimum energy consumption requires the microswimmers to be close enough to each other, since at small distances the hydrodynamic interactions of microswimmers reduce their energy consumption. Moreover, we also showed that... 

    Investigation of time-frequency analysis and transitional boundary layer over a pitching airfoil

    , Article Scientia Iranica ; Volume 28, Issue 2 B , 2021 , Pages 860-876 ; 10263098 (ISSN) Akhlaghi, H ; Soltani, M. R ; Maghrebi, M. J ; Sharif University of Technology
    Sharif University of Technology  2021
    Abstract
    Transitional boundary layer over a pitching airfoil at low Reynolds number (Re = 2:7 × 105) is experimentally investigated using space-frequency and time-frequency analyses of hot- film signals. Boundary layer events are visualized based on the space-frequency and time-frequency plots. The precursor phenomenon for turbulent and fully separated flows is presented based on the time-frequency analysis. A new technique based on time-frequency analysis of hot- film signals is introduced to measure the transition onset and relaminarization locations. This technique functions based on the analysis of high-frequency disturbances of the measured data. Significant attention has been drawn to the... 

    Heat transfer enhancement of a fin-and-tube compact heat exchanger by employing magnetite ferrofluid flow and an external magnetic field

    , Article Applied Thermal Engineering ; Volume 164 , 2020 Bezaatpour, M ; Rostamzadeh, H ; Sharif University of Technology
    Elsevier Ltd  2020
    Abstract
    Compact heat exchangers as modern industrial devices are designed to improve heat recovery and saving energy processes in restricted spaces. In the current study, effect of a uniform external magnetic field with Fe3O4/water nanofluid for heat transfer enhancement of a fin-and-tube compact heat exchanger is numerically investigated. The obtained results are verified by the available experimental data to demonstrate accuracy of the present simulation. The results indicated that the local and average heat transfer coefficients increase around the tubes in the presence of an external magnetic field due to the vortex formation behind the tubes as well as the flow pattern alteration in the heat... 

    Experimental study of continuous h2/air rotating detonations

    , Article Combustion Science and Technology ; 2020 Dehghan Nezhad, S ; Fahim, M ; Farshchi, M ; Sharif University of Technology
    Taylor and Francis Inc  2020
    Abstract
    An experimental study of a lab scale rotating detonation combustor (RDC) has been conducted to identify and classify its modes of operation under different feeding conditions. The chamber uses air as oxidizer and hydrogen as fuel. The stability diagram of the RDC has been determined based on the detonation chamber Reynolds number and reactants mixture equivalence ratio values. The Reynolds number is based on the air volume flow rate, chamber annulus size, and the reactants mixture feeding slot area. Hence the effects of geometrical parameters and operational parameters on the detonation wave stability can be presented in a single stability map. This diagram identifies different zones in... 

    Effect of active feather length on aerodynamic performance of airfoils at low reynolds number flow

    , Article AIAA AVIATION 2020 FORUM, 15 June 2020 through 19 June 2020 ; Volume 1 PartF , 2020 Esmaeili, A ; Darbandi, M ; Schneider, G. E ; Sharif University of Technology
    American Institute of Aeronautics and Astronautics Inc, AIAA  2020
    Abstract
    To increase the flight endurance of a Micro air vehicle (MAVs), which operates at low Reynolds number flow, one way is to harvest energy during its flight. By inspiring from the nature when all the birds use their feathers to control and distribute their power along the flying time, a solution might be design of a piezoelectric plate as feathers, which scavenges energy directly from the fluid flow. Cantilevered beam with piezo-ceramic layer undergoing vortex-induced vibrations can convert the mechanical energy available from the ambient environment to a usable electrical power. Since a flow-driven piezoelectric composite beam takes a form of natural three-way coupling of the turbulent fluid... 

    Independent control of multiple magnetic microrobots: design, dynamic modelling, and control

    , Article Journal of Micro-Bio Robotics ; Volume 16, Issue 2 , 27 June , 2020 , Pages 215-224 Khalesi, R ; Nejat Pishkenari, H ; Vossoughi, G ; Sharif University of Technology
    Springer Science and Business Media Deutschland GmbH  2020
    Abstract
    Swimming microrobots have a variety of applications including drug delivery, sensing, and artificial fertilization. Their small size makes onboard actuation very hard, and therefore an external source such as the magnetic field is a practical way to steer and move the robot. In this paper, we have designed a novel microrobot steered by magnetic paddles. We have also discussed design parameters where, based on the conducted simulation, the robot speed reaches 520 um/s. It is shown that the microrobot speed depends on the robot paddle dimensions. According to the microrobots motion characteristics and their different reactions to the same input, we have designed a steering strategy for... 

    The effects of different jet velocities and axial misalignment on the liquid sheet of two colliding jets

    , Article Chemical Engineering Science ; Volume 206 , 2019 , Pages 235-248 ; 00092509 (ISSN) Kashanj, S ; Kebriaee, A ; Sharif University of Technology
    Elsevier Ltd  2019
    Abstract
    This experimental study investigated the patterns and characteristics of the liquid sheet formed by two axial misaligned colliding jets and two colliding jets with different velocities. The tests were limited to the low Reynolds number region, 100

    Shooting at the nanoscale: Collection and acceleration of nanowires with an external electric field

    , Article Applied Physics Letters ; Volume 114, Issue 1 , 2019 ; 00036951 (ISSN) Farain, K ; Esfandiar, A ; Moshfegh, A. Z ; Sharif University of Technology
    American Institute of Physics Inc  2019
    Abstract
    We report an approach for collecting, charging, and exceedingly fast motion of silver nanowires (Ag NWs) using an external static electric field. With a proper choice of suspension medium, dispersed Ag NWs can be efficiently driven to align and accumulate vertically on the edges of two parallel gold microelectrodes on a glass substrate surface by dielectrophoresis. Then, at sufficiently high electric fields (> 2.0 × 10 5 V/m), these NWs break at the electrode contact point while carrying some net charge. Afterwards, they immediately accelerate in the field direction and, despite an extremely low Reynolds number for the motion of NWs in viscous liquids, move with high speeds (> 25 mm/s)... 

    On coarse grids simulation of compressible mixing layer flows using vorticity confinement

    , Article Journal of Fluids Engineering, Transactions of the ASME ; Volume 140, Issue 3 , 2018 ; 00982202 (ISSN) Hejranfar, K ; Ebrahimi, M ; Sadri, M ; Sharif University of Technology
    American Society of Mechanical Engineers (ASME)  2018
    Abstract
    In this work, the capability and performance of the vorticity confinement (VC) implemented in a high-order accurate flow solver in predicting two-dimensional (2D) compressible mixing layer flows on coarse grids are investigated. Here, the system of governing equations with incorporation of the VC in the formulation is numerically solved by the fourth-order compact finite difference scheme. To stabilize the numerical solution, a low-pass high-order filter is applied, and the nonreflective boundary conditions are used at the farfield and outflow boundaries to minimize the reflections. At first, the numerical results without applying the VC are validated by available direct numerical... 

    Experimental investigation of slip velocity and settling distribution of micro-particles in converging–diverging microchannel

    , Article Microsystem Technologies ; Volume 23, Issue 8 , 2017 , Pages 3361-3370 ; 09467076 (ISSN) Shirinzadeh, F ; Saidi, M. H ; Davari, A ; Sharif University of Technology
    Springer Verlag  2017
    Abstract
    An experimental test bed based on single particle tracking techniques is employed in order to investigate the velocity domain, slip velocity, and settling distribution of micro-particles in low-Reynolds number poiseuille flow in converging–diverging microchannel. Three-dimensional velocity domain of particles are studied in the presence of walls and compared with the particle-free fluid. The results show that the velocity of particles moving near the side walls of microchannel decreases about 30 % compared to those moving at the centerline. Furthermore, the effects of converging–diverging geometry on sedimentation of micro-particles are considered. The results show an average decrease of... 

    Numerical study on boundary layer control using CH4[sbnd]H2[sbnd]air Micro-reacting jet

    , Article International Journal of Hydrogen Energy ; Volume 41, Issue 47 , 2016 , Pages 22433-22452 ; 03603199 (ISSN) Mardani, A ; Yahyavi Koochaksarai, M ; Javadi, K ; Sharif University of Technology
    Elsevier Ltd  2016
    Abstract
    The focus of present numerical study is on assessment of control of laminar separation bubble phenomenon using Micro-scale combustion actuators in an airfoil with low Reynolds number under surface effect and free flows. In this way, the characteristics of laminar separation bubble such as its formation, geometry, and transition from laminar to turbulent around airfoil SD8020 in attack angles of 5 and 8° are investigated. Following that, the new combustion actuators in Micro-scale, cold, and hot air-jet injection are introduced to control boundary layer flow in terms of eliminating the separation bubble. Some mechanisms are identified for improvement of methane-air premixed flame... 

    Experimental investigation of slip velocity and settling distribution of micro-particles in converging–diverging microchannel

    , Article Microsystem Technologies ; 2016 , Pages 1-10 ; 09467076 (ISSN) Shirinzadeh, F ; Saidi, M. H ; Davari, A ; Sharif University of Technology
    Springer Verlag  2016
    Abstract
    An experimental test bed based on single particle tracking techniques is employed in order to investigate the velocity domain, slip velocity, and settling distribution of micro-particles in low-Reynolds number poiseuille flow in converging–diverging microchannel. Three-dimensional velocity domain of particles are studied in the presence of walls and compared with the particle-free fluid. The results show that the velocity of particles moving near the side walls of microchannel decreases about 30 % compared to those moving at the centerline. Furthermore, the effects of converging–diverging geometry on sedimentation of micro-particles are considered. The results show an average decrease of...