Loading...
Search for: maleki--e
0.012 seconds

    On the efficiency of artificial neural networks for plastic analysis of planar frames in comparison with genetic algorithms and ant colony systems

    , Article Neural Computing and Applications ; 2016 , Pages 1-19 ; 09410643 (ISSN) Jahanshahi, M ; Maleki, E ; Ghiami, A ; Sharif University of Technology
    Springer-Verlag London Ltd 
    Abstract
    The investigation of plastic behavior and determining the collapse load factors are the important ingredients of every kinematical method that is employed for plastic analysis and design of frames. The determination of collapse load factors depends on many effective parameters such as the length of bays, height of stories, types of loads and plastic moments of individual members. As the number of bays and stories increases, the parameters that have to be considered make the analysis a complex and tedious task. In such a situation, the role of algorithms that can help to compute an approximate collapse load factor in a reasonable time span becomes more and more crucial. Due to their... 

    Surface severe plastically deformed nanostructured aa7075 alloy: assessment on tribological and axial fatigue behaviors

    , Article Journal of Materials Engineering and Performance ; Volume 29, Issue 6 , 2020 , Pages 3774-3783 Efe, Y ; Karademir, I ; Husem, F ; Maleki, E ; Unal, O ; Sharif University of Technology
    Springer  2020
    Abstract
    AA7075 alloy is exposed to severe shot peening (SSP) with an Almen intensity of 20A. The microstructure is analyzed via FEGSEM and EBSD microscopy. X-ray diffraction (XRD) analysis is used to evaluate the crystallite size in terms of FWHM measurements. The residual stress measurements show a thicker compressed layer (600 µm) formed by SSP. Microhardness improvements are observed as 30% on topmost surface and releases substantially after 600 µm. Coefficient of friction (COF) of treated material remains higher throughout the sliding distance, however, is reduced particularly in the early stage of sliding distance for the wear load of 20 N. The effect of SSP is vanished particularly at lower... 

    Effect of severe shot peening and ultra-low temperature plasma nitriding on Ti-6Al-4V alloy

    , Article Vacuum ; Volume 150 , April , 2018 , Pages 69-78 ; 0042207X (ISSN) Unal, O ; Maleki, E ; Varol, R ; Sharif University of Technology
    Elsevier Ltd  2018
    Abstract
    In this study, the fatigue behavior of Ti-6Al-4V alloy is tend to be improved by severe plastic deformation via shot peening and plasma nitriding. Shot peening with sub-branches: Conventional shot peening (A12-14), severe shot peening (A28–30 and A34-36) and repeening (N6-8) are exposed. Besides plasma nitriding is implemented at 500 °C, 550 °C and 600 °C with the durations of 4, 8 and 16 h. Due to utilization of shot peening as prior severe plastic deformation during diffusion of nitrogen, two methods are applied in sequence. Severe shot peening forms ultra-fine crystals and oriented grains by disintegrating of α and β phases just below the surface and increases surface roughness. Plasma... 

    Plasma nitriding of gradient structured AISI 304 at low temperature: Shot peening as a catalyst treatment

    , Article Vacuum ; Volume 164 , 2019 , Pages 194-197 ; 0042207X (ISSN) Unal, O ; Maleki, E ; Varol, R ; Sharif University of Technology
    Elsevier Ltd  2019
    Abstract
    This study involves the capability of severe shot peening (SSP) as a catalyst intake for plasma nitriding process and the probability of reducing the requirement of thermal energy individually on the diffusion of interstitial atoms. To this end, combination of mechanical-thermal energy is run with pure thermal plasma assisted energy. Therefore, SSP is exposed to AISI 304 austenitic stainless steel as a former treatment and gradient structured surface (nanograined zone, ultrafine grain martensite-twin intersections zone and twin densed zone) is created. Then, plasma nitriding at 400 0 C-4h and 475 0 C-2h temperature-duration conditions. The condition of 475 0 C-2h provides the requirements of... 

    An improvement in fatigue behavior of AISI 4340 steel by shot peening and ultrasonic nanocrystal surface modification

    , Article Materials Science and Engineering A ; Volume 791 , 2020 Karimbaev, R ; Pyun, Y. S ; Maleki, E ; Unal, O ; Amanov, A ; Sharif University of Technology
    Elsevier Ltd  2020
    Abstract
    Individual and synergy effects of shot peening (SP) and ultrasonic nanocrystal surface modification (UNSM) on rotary bending fatigue (RBF) behavior of AISI 4340 steel were systematically investigated at various bending stress levels in the range of 275–600 MPa. The results revealed that the fatigue behavior of the as-received sample was enhanced by SP and it was further enhanced by SP and UNSM combination, while the UNSM-treated one exhibited the highest enhancement in fatigue behavior. The fatigue behavior of the SP + UNSM sample was enhanced after SP, but it was found to be detrimental after UNSM. Apart from RBF experiments, individual and synergy effects of SP and UNSM on surface... 

    A novel enzyme based biosensor for catechol detection in water samples using artificial neural network

    , Article Biochemical Engineering Journal ; Volume 128 , 2017 , Pages 1-11 ; 1369703X (ISSN) Maleki, N ; Kashanian, S ; Maleki, E ; Nazari, M ; Sharif University of Technology
    Elsevier B.V  2017
    Abstract
    Biosensors could be used as digital devices to measure the sample infield. Consequently, computational programming along with experimental achievements are required. In this study, a novel biosensor/artificial neural network (ANN) integrated system was developed. Poly (3,4-ethylenedioxy-thiophene)(PEDOT), graphene oxide nano-sheets (GONs) and laccase (Lac) were used to construct a biosensor. The simple and one-pot process was accomplished by electropolymerizing 3,4-ethylenedioxy-thiophene (EDOT) along with GONs and Lac as dopants on glassy carbon electrode. Scanning electron microscopy (SEM) and electrochemical characterization were conducted to confirm successful enzyme entrapment. The... 

    Investigation of nanostructured surface layer of severe shot peened AISI 1045 steel via response surface methodology

    , Article Measurement: Journal of the International Measurement Confederation ; Volume 148 , 2019 ; 02632241 (ISSN) Unal, O ; Maleki, E ; Kocabas, I ; Yilmaz, H ; Husem, F ; Sharif University of Technology
    Elsevier B.V  2019
    Abstract
    Shot peening (SP) and also severe shot peening (SSP) provide high level compressive residual stress on a certain thickness just beneath the surface. By exposing severe plastic deformation (SPD) via SSP, the nanocrystallization is formed without any chemical alteration and the structure is to be hardened by fully mechanized process. The difference among SP, SSP and repeening (RP) is only related with the selection of the input parameters. Most of the input parameters combination constructs the Almen intensity which is the most powerful condition to be made the decision on the final shot peening of real parts. AISI 1045 medium carbon steel is selected for the optimization of input parameters... 

    Effects of severe plastic deformation on pre-osteoblast cell behavior and proliferation on AISI 304 and Ti-6Al-4V metallic substrates

    , Article Surface and Coatings Technology ; Volume 366 , 2019 , Pages 204-213 ; 02578972 (ISSN) Tevlek, A ; Aydın, H. M ; Maleki, E ; Varol, R ; Unal, O ; Sharif University of Technology
    Elsevier B.V  2019
    Abstract
    In this study, titanium alloy (Ti-6Al-4V) and austenitic stainless steel (AISI 304) biomedical alloys were subjected to surface severe plastic deformation (SSPD) via severe shot peening (SSP) with the conditions of A28-30 Almen intensity. SSP is widely accepted as much more effective than the conventional surface modification techniques since it forms a nano-grain layer with large number of dislocations and grain boundaries. The SSP treatment in this study was led to a very thin rough layer in Ti-6Al-4V titanium alloy compared to that of AISI 304. The thicker layer of AISI 304 was created by twin-twin intersections and a martensite structure transformations. SSP treatment was resulted in a... 

    Effect of combined shot peening and ultrasonic nanocrystal surface modification processes on the fatigue performance of AISI 304

    , Article Surface and Coatings Technology ; Volume 358 , 2019 , Pages 695-705 ; 02578972 (ISSN) Amanov, A ; Karimbaev, R ; Maleki, E ; Unal, O ; Pyun, Y. S ; Amanov, T ; Sharif University of Technology
    Elsevier B.V  2019
    Abstract
    In this study, the fatigue performance of AISI 304 subjected to shot peening (SP), ultrasonic nanocrystal surface modification (UNSM) and the combination of SP + UNSM processes was systematically assessed by rotary bending fatigue (RBF) tester at different stress levels. The purpose of combining SP and UNSM processes is to find out whether SP following UNSM process can further improve the fatigue life of AISI 304 in comparison with the SP and UNSM processes alone. Interestingly, the fatigue strength of AISI 304 was deteriorated by the combination of SP + UNSM processes in comparison with the UNSM process alone, but the combination of SP + UNSM processes demonstrated a higher fatigue strength... 

    Enhancement in microstructural and mechanical performance of AA7075 aluminum alloy via severe shot peening and ultrasonic nanocrystal surface modification

    , Article Applied Surface Science ; Volume 528 , 2020 Efe, Y ; Karademir, I ; Husem, F ; Maleki, E ; Karimbaev, R ; Amanov, A ; Unal, O ; Sharif University of Technology
    Elsevier B.V  2020
    Abstract
    In this experimental study, AA7075 aluminum alloy was subjected to pure severe shot peening (SSP), pure ultrasonic nanocrystalline surface modification (UNSM) and the combination of these two treatments. The treated specimens were analyzed with detailed microstructure analysis, micro-hardness, surface roughness, XRD investigations and wear-friction tests. The results demonstrated that UNSM exhibited fine surface finish and provided minimum surface roughness with the Ra value of 0.8 µm. Moreover, UNSM played an important role in the reduction of Ra as a secondary treatment. Electron back scatter diffraction (EBSD) analysis, full width at half maximum (FWHM) evaluations and compressive... 

    Effects of constrained groove pressing, severe shot peening and ultrasonic nanocrystal surface modification on microstructure and mechanical behavior of S500MC high strength low alloy automotive steel

    , Article Applied Surface Science ; Volume 538 , 2021 ; 01694332 (ISSN) Karademir, I ; Celik, M. B ; Husem, F ; Maleki, E ; Amanov, A ; Unal, O ; Sharif University of Technology
    Elsevier B.V  2021
    Abstract
    S500MC high strength low alloy automotive steel is exposed to bulk severe plastic deformation (SPD) via constrained groove pressing (CGP) and surface severe plastic deformation (S2PD) via severe shot peening (SSP) and ultrasonic nanocrystal surface modification (UNSM). SSP and UNSM could create a nanocrystallization layer till 50–100 µm away from outmost surface. EBSD investigations showed average nano-grain size obtained via SSP and UNSM was found to be below 100 nm regime. The strength was improved via 1st to 4th pass of CGP, but elongation percentage decreased abruptly. UNSM achieves both strength-ductility improvement with gradient structure. SSP improves the total elongation however a... 

    Experimental investigation and artificial neural network modeling of warm galvanization and hardened chromium coatings thickness effects on fatigue life of AISI 1045 carbon steel

    , Article Journal of Failure Analysis and Prevention ; Volume 17, Issue 6 , 2017 , Pages 1276-1287 ; 15477029 (ISSN) Kashyzadeh, K. R ; Maleki, E ; Sharif University of Technology
    Abstract
    In the present study, the main purpose is investigation of the coatings thickness effect on the fatigue life of AISI 1045 steel. Herein, two different coatings of warm galvanization and hardened chromium have been used on the specimens. Fatigue tests were performed on specimens with different coating thicknesses of 13 and 19 µm. In the high-cycle level, S–N curves are extracted with 13 points for each sample. The results show that the galvanized coating is the most appropriate coating with low thickness, but with significant increasing of coating thickness, the best choice is hardened chromium coating. However, artificial neural network (ANN) has been used as an efficient approach instead of...