Loading...
Search for: manipulability
0.018 seconds
Total 229 records

    Intelligent Force Control for Hydraulic Manipulator within the Impedance Control Framework

    , M.Sc. Thesis Sharif University of Technology Alimohammadi, Hossein (Author) ; Khayyat, Amir Ali Akbar (Supervisor)
    Abstract
    The main concept of this thesis is to simulate, develop, and analyze the performance of force control method by applying to a Unimate MK-II hydraulic manipulator. In this investigation, simulation studies are based on the concept of impedance control technique. Position-based formulation of impedance control is employed. First in this research, a PID controller is employed and is shown to be capable of performing position control task precisely despite the fact that inertia, joint stiction, valve deadband and other nonlinearities are presented. Although trajectory tracking is performed well after several investigations, we have concluded that the impedance control cannot perform a desirable... 

    Decentralized Control of Robot Manipulators

    , M.Sc. Thesis Sharif University of Technology Yazdi Almodarresi, Mostafa (Author) ; Namvar, Mehrzad (Supervisor)
    Abstract
    In this thesis, a decentralized controller for trajectory tracking of robot manipulators is developed. Proposed control scheme use uncalibrated joint torque sensors. Recently, it has been shown that the use of joint torque sensing results in a simplified manipulator model and reduce the need of dynamic model of links for controlling. In this thesis, we use the special lower triangular structure of this simplified model for decentralized control of manipulator. For the first time a smooth decentralized law is designed which makes both position and velocity tracking errors of robot manipulators globally converge to zero. Against most of previous work in decentralized control of manipulators,... 

    Impedance Control of Flexible Base Moving Manipulators

    , Ph.D. Dissertation Sharif University of Technology Salehi, Mahdi (Author) ; Vossoughi, Gholamreza (Supervisor)
    Abstract
    In this paper, the general research of impedance control is addressed for a robotic manipulator with a moving flexible base. Impedance control imposes a relation between force and displacement at the contact point with the environment. The concept of impedance control of flexible base moving manipulators (FBMM) is rather new and is being considered. The dynamic of manipulator is decomposed into slow and fast dynamics using singular perturbation method. New sliding mode impedance control method (SMIC), using an element on the end effector is proposed for high precision impedance control of FBMM. The sliding mode impedance control method as a robust impedance control law is derived for the... 

    Navigation and Control of a Free-Flying Satellite for Cargo Transportation and Placement in Intra-Vehicular Environment

    , M.Sc. Thesis Sharif University of Technology Moosavi, Farzan (Author) ; Kiani, Maryam (Supervisor)
    Abstract
    The main topic of this research is the navigation and control of a free-flying satellite with a robot manipulator while transferring and placing cargo on a space station. After connecting the cargo module, astronauts and robots need to deliver the available loads to the desired modules in a space station. Capturing an object or cargo is a critical issue studied extensively so far. However, delivery and placing of the cargo at the target point have not been investigated yet, to the best of the author’s knowledge; hence, this is a primary motivation for conducting the proposed research. After capturing the payload, the position and attitude of the manipulator with respect to the station’s... 

    Crosstalk Fault Treatment in NoCs Using Data Manipulation

    , Ph.D. Dissertation Sharif University of Technology Shirmohammadi, Zahra (Author) ; Miremadi, Ghasem (Supervisor)
    Abstract
    Recent advances in Very-Large-Scale Integration (VLSI) technologies have enabled designers to integrate a large number of Processing Elements (PEs) on a single die. According to International Technology Roadmap for Semiconductors (ITRS), the number of PEs will reach 5000 on a single die in 2021. Although the main achievements of such rapid advancement in chips are high processing speed, shrinkage of technology size has made chips highly sensitive to different challenges. Networks on chip (NoCs), as an example of these systems, are not exempted from these challenges. Crosstalk fault is one of the major fault resources in NoCs. Crosstalk faults occur due to coupling capacitances between... 

    Modeling and Manipulation of Intracytoplasmic Cell Injection

    , M.Sc. Thesis Sharif University of Technology Moshtaghi, Behnam (Author) ; Ahmadian, Mohammad Taghi (Supervisor)
    Abstract
    The injection process on cell is a very accurate and sensitive operation. This method is used for several new invented approaches such as tracytoplasmic Cell Injection or drug delivery. Controlling the injection force in micro scale is one of the problems of mentioned operations. Current huge and expensive laboratorial devices are helping the operators to do injection operation with :nore success. In this study a simple and novel microelectromechanical (MEMS) mechanism for doing injection process automatically on the biological cells is proposed. In order to controlling this device properly, we should model and simulate the operation condition from initial position to final condition. This... 

    Dynamic Modeling and Adaptive Controller design for Cooperative Flexible Manipulators to Grasp and Manipulation of an Object

    , M.Sc. Thesis Sharif University of Technology Hejrati, Mahdi (Author) ; Sayyaadi, Hassan (Supervisor)
    Abstract
    In a world where energy conservation is a critical topic, cooperative flexible manipulators will play an important role. Conventional robotic manipulators have been designed to have maximum stiffness to achieve both minimum vibration and good positioning accuracy of the end-effector, which causes more power consumption and reduced efficiency. Due to the high inertia of such arms, interaction with humans or sensitive environments is hazardous. On the other hand, Flexible Link Manipulators are designed to be lightweight, using lower energy and producing higher efficiency. Unfortunately, the link's flexibility increases vibrations and decreases the accuracy of the end-effector. Since, the... 

    Simulation of the Biomolecule Imaging and Manipulation Via AFM by Molecular Dynamics Method

    , M.Sc. Thesis Sharif University of Technology Kheiroddin, Mohsen (Author) ; Meghdari, Ali (Supervisor) ; Moosavi, Ali (Supervisor)
    Abstract
    In this thesis we try to find optimized parameters for imaging and manipulation of a biosample with AFM. For this we have prepared a numerous Molecular Dynamics simulation and find some reliable result. So, first we have focused on imaging process in Non contact mode (the less harmful mode). Then we headed into the manipulation process. The main problem about manipulating a biosample is the environment. In imaging section, the process of imaging a biomolecule by AFM is modeled using molecular dynamics simulations. Since the large normal force exerted by the tip on the biosample in contact and tapping modes may damage the sample structure and produce irreversible deformation, the non-contact... 

    Analysis and Design of Controller and user Interface of a 6DOF Stewart Platform – based Hydraulic Motion Simulator for Heavy Payloads

    , M.Sc. Thesis Sharif University of Technology Heydari, Mohammad Hossein (Author) ; Durali, Mohammad (Supervisor)
    Abstract
    Motion simulators have been highly sought after by the growth of the aerospace industry. In the meantime, the Stewart mechanism, or the so-called Hexapads, is a robot that, in addition to being used in machining tools, is mainly used to simulate the flight. The robot is considering the project to test parts and equipment installed in marine vessels under sea movements and waves. Therefore, according to information obtained through real case studies, the purpose of this project is to design and implement a hexapad controller and user interface for samples weighing up to 2 tons which can handle linear accelerations up to 1 g, rotary accelerations up to 200 º / s2 performs at a frequency... 

    Configurable Robot Controller Design and Prototyping

    , M.Sc. Thesis Sharif University of Technology Shambouli, Morteza (Author) ; Durali, Mohammad (Supervisor)
    Abstract
    The present research intends to design a controller for modular reconfigurable manipulator robots. Manipulators are made up of several links and joints. By attachment of links and joints in different ways, one may make a variety of robot configurations in modular reconfigurable manipulators.
    To meet modularity and reconfiguration needs, hybrid control architecture was selected which contains a central supervisory section and distributed controllers located on individual modules. Central supervisory section specifies the trajectory of the robot and other control tasks like position control, speed control and etc. are performed by distributed controllers. In hybrid architecture, dynamic... 

    Design and Implementation of a Real Time Controller for a 6 DOF Manipulator

    , M.Sc. Thesis Sharif University of Technology Nasseri, Mohammad Hossein (Author) ; Meghdari, Ali (Supervisor)
    Abstract
    In recent decades, the usage of robots in industrial applications increased dramatically. One group of robots are manipulators which they are used in production lines for moving parts, cutting, welding, …. In these applications, different control methods are used to control the end effector of manipulators precisely. From one aspect, control methods are divided to two parts: A) The methods that do not need to equation of motion of robot, such as proportional-integral-derivative method. B) The methods that are designed based on equation of motion of robot. To use these methods, first the equation of motion of manipulator should be calculated according to its structure. These equations are... 

    Design and Analysis of a Cable Based Robot Similar to a Human Hand

    , M.Sc. Thesis Sharif University of Technology Abyaneh, Soroush (Author) ; Zohoor, Hassan (Supervisor)
    Abstract
    The application of manipulators is becoming more and more popular in objects handling especially when it is desired to have access to remote areas in destructive or hazardous taskspaces. For this purpose, a hand-like mechanism must be designed to be used as an end-effector, which can grasp objects. In this paper a cable driven grasping mechanism has been presented. In the proposed mechanism each finger consists of three phalanxes which are actuated by a single motor. Also, locking and unlocking constraints are used in the mechanism in order to generate an anthropomorphic motion, in which, the order of reaching phalanxes to the object is sequential, in such a way that each phalanx starts... 

    Integrated Design of a Rigid Manipulator and its time Optimal Trajectory for Point to Point Motion

    , M.Sc. Thesis Sharif University of Technology Nasrollahnezhad, Saeed (Author) ; Zohoor, Hassan (Supervisor)
    Abstract
    The problem of point to point repetitive time reduction for the rigid manipulators is a major case in industry especially for applications such as point to point welding and part manipulation. These motions are usually repeated for a large numbers of cycles, so that even a minor economization in time can be hugely significant. Nowadays, the time optimal control problem of manipulator with completed theory, is an appropriate solution of the problem. In recent years, with the expansion of design space to structure design, more satisfactory results can be obtained using this method.
    Optimal balancing is a new approach based on the optimal control theory in which the balancing unknowns plus... 

    Design a Cartesian, Decoupled and Isotropic 5-DoF Parallel Manipulator

    , M.Sc. Thesis Sharif University of Technology Davoudi Dehkordi, Matin (Author) ; Zohoor, Hassan (Supervisor)
    Abstract
    Given the optimum design importance of parallel mechanisms, characteristics such as degree of freedom, decoupled and isotropic in structural synthesis of these mechanisms are considered. Also, due to less attention to the development of 5-DoF parallel manipulators, in this research, the improvement of this types of mechanisms is considered. In this research effort to design 5-DoF cartesian, decoupled and isotropic parallel manipulators leads to represent four numbers of this type of mechanisms with 3T2R and 2T3R degrees of freedom. Represented PMs verified with linear transformation theory. Morever by using Jacobian, they more analyzed for their decoupled and isotropic specifications in... 

    Path Planning and Hybrid Control of a Tendon Actuated Redundant Manipulator with Lockable Joints

    , M.Sc. Thesis Sharif University of Technology Taherifar, Ali (Author) ; Alasty , Aria (Supervisor) ; Salarieh, Hassan (Supervisor)
    Abstract
    Snake-arms are hyper redundant manipulators that have high degree of freedom. Due to their high flexibility they have a great potential to work in the fully restrained, complex and hazardous environments such as Nuclear reactors and space stations. They can also be used for surgery, exploration and rescue. In this thesis the path planning and kinematic control of a special type of snake arm are investigated. In this manipulator, the extra cables are replaced by a locking system to reduce weight of the structure and the number of actuators. Therefore, by releasing and locking the joints in arbitrary sequence and by stretching the cables, the configuration of manipulator will change. This... 

    Trajectory Planning of a Spider Robot Considering Obstacle Avoidance

    , M.Sc. Thesis Sharif University of Technology Ahmadi Aras, Asila (Author) ; Ghaemi Osgouie, Kambiz (Supervisor) ; Khayyat, Amir Ali Akbar (Supervisor)
    Abstract
    Legged walking and climbing robots have recently achieved important results and developments, but they still need further improvements and study. The spider modeled as an eight-legged system. Legged robots have a body and a number of articulated legs which originate from the body and are put on the ground to hold robot’s weight or are swinging in the air to their new position. Each leg as a kinematic chain can be viewed as a manipulator that acts like a limb and contributes to the overall position and equilibrium of the structure. In order to evaluate and create an effective legged robot, the idea is to draw inspiration from nature. Spider robots present very good performances in terms of... 

    Design of Globally Convergent Observers for Robotic Systems

    , M.Sc. Thesis Sharif University of Technology Lotfi Yagin, Nima (Author) ; Namvar, Mehrzad (Supervisor) ; Mobed, Mohammad (Supervisor)
    Abstract
    In a typical rigid robot manipulator, joint angels and velocities are often considered as system states. Joint angels are usually measured by precise Shaft Encoders. However, lack of velocity measurement sensors “Tachometers” and their undesired characteristics in most of existing robotic systems make it difficult to have access to full system states. As full access to the system states in various applications is inevitable, velocity observers can be used to reconstruct or estimate the unmeasured velocity signals. This thesis presents an observer for global estimation of joint velocities in robot manipulators. A non-minimal model of a robotic manipulator is introduced to design an... 

    Design, Simulation and Control of a New Tendon Actuated Manipulator With Lockable Joints

    , M.Sc. Thesis Sharif University of Technology Honarvar, Mohammad (Author) ; Alasty, Aria (Supervisor) ; Salarieh, Hasan (Supervisor)
    Abstract
    Hyper-redundant manipulators have large number Degrees of Freedom. Because of their redundancy, such manipulators have the advantage of obstacle avoidance, overcoming singularities and intrusion into highly constrained environments. The most challenging task in designing hyper-redundant manipulators is the synthesis of actuating mechanisms with appropriate kinematics and effective power supply. Most of previous techniques in implementing hyper-redundant robots have the disadvantages of: -Using large number of actuators, -Heavy weight due to large number of actuators, -Complexity of the control system due to need of synchronizing subsets of motors. In this thesis a novel hyper redundant... 

    Design, Manufacturing and Control of Cell Micromanipulation System

    , M.Sc. Thesis Sharif University of Technology Jafarimoghaddam, Amir (Author) ; Nejat, Hossein (Supervisor) ; Meghdari, Ali (Supervisor)
    Abstract
    The project aims to design and build a device that is capable of manipulation and control of micro-scale objects in dry and fluid medium. Among all the micro-manipulation methods, the use of magnetic fields has many applications. Because it has the ability to work without direct contact and also within a specified range for living tissue, is safe. To achieve this goal,manipulation systems ever made, were studied. Then, by presenting a conceptual design and the use of appropriate dynamic models for describing the behavior of micro-robot, the system performance was simulated. After this stage, The detailed design of the closed-loop system which must controls the position of the micro-robot... 

    Identification and Control of Robot Manipulators using Cell Phone Sensors

    , M.Sc. Thesis Sharif University of Technology Ebrahimi Varkiani, Mohammad (Author) ; Namvar, Mehrzad (Supervisor)
    Abstract
    The goal of controlling robot manipulators is to perform the mission intended for its end effector. Model-based control is a solution that can achieve the control goal with high speed and accuracy in the presence or absence of environmental obstacles by using the knowledge of the robot model. In this thesis, the Armtin 5 robot model parameters were identified in two steps. In the first step, the gravity and friction parameters and in the second step, the dynamic parameters were estimated. In the estimation of gravity and friction parameters, the non-linear behavior of friction causes the estimated parameters to be accompanied by a large amount of error. Estimation of the parameters was...