Loading...
Search for: mass-transport
0.01 seconds
Total 28 records

    Accurate analytical model for determination of effective diffusion coefficient of polymer electrolyte fuel cells by designing compact Loschmidt cells

    , Article Fuel ; Volume 199 , 2017 , Pages 551-561 ; 00162361 (ISSN) Izadmehr, M ; Abbasi, M ; Mansouri, M ; Kazemi, A ; Nakhaee, A ; Daryasafar, A ; Sharif University of Technology
    Elsevier Ltd  2017
    Abstract
    Effective diffusion coefficient is an important parameter which needs to be determined in different fields of study, such as cathode catalyst layers of PEM fuel. For this purpose, a Loschmidt diffusion cell can be used. When a porous medium is placed in Loschmidt apparatus, the effective gas diffusion coefficient (EGDC) of this section must be correlated by diffusion coefficient in absence of a porous medium. In the previous researches studying the Loschmidt diffusion cell, a simplifying infinite-length assumption was used in the analytical solution. Therefore, the solution is only applicable for a short time range, and this can result in high error. In order to overcome this challenge, the... 

    An asymmetric intelligent model for public transportation networks

    , Article 11th International IEEE Conference on Intelligent Transportation Systems, ITSC 2008, Beijing, 10 December 2008 through 12 December 2008 ; December , 2008 , Pages 511-516 Ehsanfar, A ; Farzinfard, S ; Isaai, M. T ; Sharif University of Technology
    2008
    Abstract
    This paper proposes an asymmetric model for urban public transportation networks. Predictive techniques are being developed, to allow advanced modeling and comparison with historical baseline data. The current trend is toward fewer costly microprocessor modules with hardware memory management and Real-Time Operating Systems This model is formulated as a linear programming problem using LP-solvers and is developed and simulated for a large metropolitan area of Tehran, Iran. The mathematical procedure as its quantitative results is presented. © 2008 IEEE  

    An innovative three dimensional numerical model for bipolar plates to enhance the efficiency of PEM fuel cells

    , Article ASME 2012 10th International Conference on Fuel Cell Science, Engineering and Technology Collocated with the ASME 2012 6th International Conference on Energy Sustainability, FUELCELL 2012, 23 July 2012 through 26 July 2012 ; July , 2012 , Pages 351-360 ; 9780791844823 (ISBN) Arbabi, F ; Roshandel, R ; Sharif University of Technology
    American Society of Mechanical Engineers (ASME)  2012
    Abstract
    The efficiency of proton exchange membrane (PEM) fuel cell is straightly correlated to the bipolar plate design and fluid channel arrangements. Higher produced energy can be attained by optimal design of type, size, or patterns of the channels. Previous researches showed that the bipolar plate channel design has a considerable effect on reactant distribution uniformity as well as humidity control in PEM fuel cells. This paper concentrates on enhancements in the fuel cell performance by optimization of bipolar plate design and channels configurations. A numerical model of flow distribution based on Navier-Stokes equations using individual computer code is presented. The results gained from... 

    A practical model for transfer optimization in a transit network: Model formulations and solutions

    , Article Transportation Research Part A: Policy and Practice ; Volume 44, Issue 6 , 2010 , Pages 377-389 ; 09658564 (ISSN) Shafahi, Y ; Khani, A ; Sharif University of Technology
    2010
    Abstract
    This paper studies the transit network scheduling problem and aims to minimize the waiting time at transfer stations. First, the problem is formulated as a mixed integer programming model that gives the departure times of vehicles in lines so that passengers can transfer between lines at transfer stations with minimum waiting times. Then, the model is expanded to a second model by considering the extra stopping time of vehicles at transfer stations as a new variable set. By calculating the optimal values for these variables, transfers can be better performed. The sizes of the models, compared with the existing models, are small enough that the models can be solved for small- and medium-sized... 

    A simple model of intimal thickening-effects of hypertension

    , Article 2012 19th Iranian Conference of Biomedical Engineering, ICBME 2012 ; 2012 , Pages 276-281 ; 9781467331302 (ISBN) Mirbagheri, S. A ; Saidi, M. S ; Firoozabadi, D ; Sharif University of Technology
    2012
    Abstract
    A vast amount of death in the world has been attributed to atherosclerosis. This disease causes plaque formation and finally lack of blood supply to an organ. The prominent aim of this study is proposing an accurate and simple model to investigate the process of arterial wall thickening. In order to investigate LDL (low density lipoprotein) accumulation in arterial wall which is considered the first stage of atherosclerosis, a four layer model for arterial wall consisting of endothelium, intima, IEL and media is presented. All layers are treated as homogenous porous media. The four-layer arterial wall model is the most powerful and reliable tool for modeling LDL transport within arterial... 

    A swarm based method for solving transit network design problem

    , Article Australasian Transport Research Forum, ATRF 2013 - Proceedings ; 2013 Bagherian, M ; Massah, S ; Kermanshahi, S ; Sharif University of Technology
    Australasian Transport Research Forum  2013
    Abstract
    In this study, a Discrete Particle Swarm Optimization (DPSO) algorithm is assimilated to solve the Transit Network Design Problem (TNDP). First, A Mixed Integer Model is developed for the TNDP. The solution methodology utilized here is made of two major elements. A route generation module is firstly developed to generate all the feasible transit lines. Through the second part, a DPSO algorithm is utilized to select the optimal set of lines from the constructed ones. The objective function is to maximize coverage index while satisfying the operator cost upper level constraints. The efficacy and accuracy of the implemented algorithms is compared with ones obtained by an enumeration process as... 

    Bus network design using genetic algorithm

    , Article 53rd Annual Transportation Research Forum, TRF 2012, 15 March 2012 through 17 March 2012, Tampa, FL ; Volume 1 , 2012 , Pages 210-225 ; 9781622764037 (ISBN) Sadrsadat, H ; Poorzahedi, H ; Haghani, A ; Sharifi, E ; Sharif University of Technology
    2012
    Abstract
    The bus network design problem is an important problem in transportation planning. It is the problem of determining a network of bus lines which best achieves a predetermined objective. This may be done with or without the presence of rapid transit lines. This study is devoted to solving this problem using genetic algorithm. The fitness function is defined as the benefit to the users of the bus network less the cost of the operator of the network, which is to be maximized subject to constraints that properly distribute bus routes over the study area. Objective function calculation depends on the basic data of the city and its bus lines and does not need traffic assignment results. So, it is... 

    Dual improvement of DNA-directed antibody immobilization utilizing magnetic fishing and a polyamine coated surface

    , Article RSC Advances ; Volume 6, Issue 112 , 2016 , Pages 111210-111216 ; 20462069 (ISSN) Esmaeili, E ; Soleimani, M ; Shamloo, A ; Mahmoudifard, M ; Vossoughi, M ; Sharif University of Technology
    Royal Society of Chemistry  2016
    Abstract
    The present study is aimed at the development of a novel approach based on the magnetic improvement of DNA-directed antibody immobilization to prepare a highly efficient sensing platform. Magnetic nanoparticle substrates with high surface area capture the dual DNA-conjugated antibodies in a solution. This allows overcoming the typical mass transport limitation of the surface-based antibody immobilization. Antibody-magnetic nanoparticle conjugation is based on a robust hybridization between a DNA tether (attached to the antibody) and its complementary sequence (immobilized on the nanoparticle). Conventional antibody immobilization for the detection of proteins is often insignificant for the... 

    Effects of hypertension on Intima-Media Thickness (IMT); application to a human carotid artery

    , Article Scientia Iranica ; Volume 23, Issue 4 , 2016 , Pages 1731-1740 ; 10263098 (ISSN) Mirbagheri, S. A ; Saidi, M. S ; Sohrabi, S ; Firoozabadi, B ; Banazadeh, M. H ; Sharif University of Technology
    Sharif University of Technology 
    Abstract
    A vast number of deaths in the world have been attributed to atherosclerosis. The prominent aim of this study is proposing an accurate and simple model to investigate the process of arterial wall thickening. In order to investigate LDL (Low Density Lipoprotein) accumulation in arterial wall, a four layer model for arterial wall consisting of endothelium, intima, IEL, and media is presented. All layers are treated as homogenous porous media. This model has been solved both numerically and analytically. Obtained accumulated LDL in the intima is used to calculate oxidized LDL flux. Also, the presented model and clinical data are used to prepare the growth model for arterial wall. Furthermore,... 

    Enhancement of surface adsorption-desorption rates in microarrays invoking surface charge heterogeneity

    , Article Sensors and Actuators, B: Chemical ; 2016 ; 09254005 (ISSN) Abdollahzadeh, M ; Saidi, M. S ; Sadeghi, A ; Sharif University of Technology
    Elsevier B.V  2016
    Abstract
    This investigation is devoted to the influences of non-uniform wall characteristics on the surface adsorption-desorption rates in an electrokinetic microarray. Utilizing already explored electroosmotic and electrophoretic velocities, the species transport equations are solved by a finite-volume-based numerical approach. Uniform, sinusoidal, and pulse-like distributions of the zeta potential are considered in the analysis. The developed model is validated by comparing the results with those of two analytical solutions that are derived for limiting conditions. The results reveal that, in some cases, the surface charge heterogeneity can reduce the saturation time by more than 60%. The efficacy... 

    Enhancement of surface adsorption-desorption rates in microarrays invoking surface charge heterogeneity

    , Article Sensors and Actuators, B: Chemical ; Volume 242 , 2017 , Pages 956-964 ; 09254005 (ISSN) Abdollahzadeh, M ; Saidi, M. S ; Sadeghi, A ; Sharif University of Technology
    Elsevier B.V  2017
    Abstract
    This investigation is devoted to the influences of non-uniform wall characteristics on the surface adsorption-desorption rates in an electrokinetic microarray. Utilizing already explored electroosmotic and electrophoretic velocities, the species transport equations are solved by a finite-volume-based numerical approach. Uniform, sinusoidal, and pulse-like distributions of the zeta potential are considered in the analysis. The developed model is validated by comparing the results with those of two analytical solutions that are derived for limiting conditions. The results reveal that, in some cases, the surface charge heterogeneity can reduce the saturation time by more than 60%. The efficacy... 

    Fluid particle diffusion through high-hematocrit blood flow within a capillary tube

    , Article Journal of Biomechanics ; Volume 44, Issue 1 , Jan , 2011 , Pages 170-175 ; 00219290 (ISSN) Saadatmand, M ; Ishikawa, T ; Matsuki, N ; Jafar Abdekhodaie, M ; Imai, Y ; Ueno, H ; Yamaguchi, T ; Sharif University of Technology
    2011
    Abstract
    Fluid particle diffusion through blood flow within a capillary tube is an important phenomenon to understand, especially for studies in mass transport in the microcirculation as well as in solving technical issues involved in mixing in biomedical microdevices. In this paper, the spreading of tracer particles through up to 20% hematocrit blood, flowing in a capillary tube, was studied using a confocal micro-PTV system. We tracked hundreds of particles in high-hematocrit blood and measured the radial dispersion coefficient. Results yielded significant enhancement of the particle diffusion, due to a micron-scale flow-field generated by red blood cell motions. By increasing the flow rate, the... 

    Hydrodynamic dispersion by electroosmotic flow of viscoelastic fluids within a slit microchannel

    , Article Microfluidics and Nanofluidics ; Volume 22, Issue 1 , January , 2018 ; 16134982 (ISSN) Hoshyargar, V ; Talebi, M ; Ashrafizadeh, S. N ; Sadeghi, A ; Sharif University of Technology
    Springer Verlag  2018
    Abstract
    The biofluids being manipulated in lab-on-a-chip devices usually contain elastic macromolecules. Accordingly, for an accurate modeling of the relevant flow physics one should invoke viscoelastic constitutive equations. In this paper, attention is paid toward the hydrodynamic dispersion by the fully developed electroosmotic flow of PTT viscoelastic fluids in slit microchannels of low zeta potential. Adopting the Taylor–Aris approach, analytical solutions are derived for late-time solute concentration and effective dispersion coefficient. Finite element-based numerical simulations are also conducted to monitor the broadening of an analyte band from the moment of injection. Both approaches are... 

    Impact of swimming gyrotactic microorganisms and viscous dissipation on nanoparticles flow through a permeable medium: a numerical assessment

    , Article Journal of Nanomaterials ; Volume 2022 , 2022 ; 16874110 (ISSN) Ahmad, S ; Younis, J ; Ali, K ; Rizwan, M ; Ashraf, M ; Abd El Salam, M. A ; Sharif University of Technology
    Hindawi Limited  2022
    Abstract
    In this paper, heat and mass transportation flow of swimming gyrotactic microorganisms (microbes) and solid nanoparticles under the viscous dissipation effect is investigated. The flow model PDEs are renovated with ordinary ones using suitable boundary layer approximations. The system governing the flow model dimensionless equations as well as boundary conditions is numerically treated with the SOR (successive over relaxation) technique. The flow, heat, and mass transport characteristics are examined against the prime parameters. A comparison is examined to be in a good agreement with the earlier results. It is found here that flow and thermal characteristics of the problem are substantially... 

    Monte Carlo simulation of a lattice model for the dynamics of randomly branching double-folded ring polymers

    , Article Physical Review E ; Volume 104, Issue 1 , 2021 ; 24700045 (ISSN) Ghobadpour, E ; Kolb, M ; Ejtehadi, M. R ; Everaers, R ; Sharif University of Technology
    American Physical Society  2021
    Abstract
    Supercoiled DNA, crumpled interphase chromosomes, and topologically constrained ring polymers often adopt treelike, double-folded, randomly branching configurations. Here we study an elastic lattice model for tightly double-folded ring polymers, which allows for the spontaneous creation and deletion of side branches coupled to a diffusive mass transport, which is local both in space and on the connectivity graph of the tree. We use Monte Carlo simulations to study systems falling into three different universality classes: ideal double-folded rings without excluded volume interactions, self-avoiding double-folded rings, and double-folded rings in the melt state. The observed static properties... 

    Numerical investigation on mixing intensification of ferrofluid and deionized water inside a microchannel using magnetic actuation generated by embedded microcoils for lab-on-chip systems

    , Article Chemical Engineering and Processing - Process Intensification ; Volume 147 , 2020 Saadat, M ; Shafii, M. B ; Ghassemi, M ; Sharif University of Technology
    Elsevier B.V  2020
    Abstract
    Effective and rapid mixing is crucial for chemical and biological processes. The purpose of the current study is to investigate the effect of steady and varying magnetic field on the mixing of a water-based ferrofluid and two streams of deionized water inside a microchannel for Lab-on-Chip applications. To this end, the nonlinear governing equations, the momentum equation, the continuity equation, the mass transport equation and the Maxwell-Ampere equations are numerically solved. A commercial code based on the finite-element method is used and the numerical simulations are validated by the experimental results in the literature. To augment the mixing performance, the effects of influencing... 

    Numerical modeling of surface reaction kinetics in electrokinetically actuated microfluidic devices

    , Article Analytica Chimica Acta ; Vol. 838, issue , August , 2014 , pp. 64-75 ; ISSN: 00032670 Sadeghi, A ; Amini, Y ; Saidi, M. H ; Chakraborty, S ; Sharif University of Technology
    Abstract
    We outline a comprehensive numerical procedure for modeling of species transport and surface reaction kinetics in electrokinetically actuated microfluidic devices of rectangular cross section. Our results confirm the findings of previous simplified approaches that a concentration wave is created for sufficiently long microreactors. An analytical solution, developed for the wave propagation speed, shows that, when normalizing with the fluid mean velocity, it becomes a function of three parameters comprising the channel aspect ratio, the relative adsorption capacity, and the kinetic equilibrium constant. Our studies also reveal that the reactor geometry idealized as a slit, instead of a... 

    Numerical simulation of non-uniform Gas diffusion layer porosity effect on polymer electrolyte membrane fuel cell performance

    , Article International Journal of Engineering, Transactions B: Applications ; Volume 20, Issue 2 , 2007 , Pages 179-192 ; 1728-144X (ISSN) Roshandel, R ; Farhanieh, B ; Sharif University of Technology
    Materials and Energy Research Center  2007
    Abstract
    Gas diffusion layers are essential components of proton exchange membrane fuel cell since the reactants should pass through these layers. Mass transport in these layers is highly dependent on porosity. Many of simulations have assumed, for simplicity, the porosity of GDL is constant, but in practice, there is a considerable variation in porosity along gas diffusion layers. In the present study the porosity variation in GDL is calculated by considering the applied pressure and the amount of water generated in the cell. A two dimensional mathematical model is developed to investigate the effect of stack compression and water generation on porosity of GDL and cell performance. The validity of... 

    Numerical study on water distribution in different layers of direct methanol fuel cells

    , Article Journal of the Electrochemical Society ; Vol. 161, issue. 8 , 2014 , pp. E3110-E3124 ; ISSN: 00134651 Kalantari, H ; Baghalha, M ; Sharif University of Technology
    Abstract
    In this paper, a two-dimensional, two-phase, isothermal model is presented to investigate the water transport characteristic and water distribution in a direct methanol fuel cell (DMFC) with emphasis on exploring the water distribution in different layers of DMFC. The liquid-gas two-phase mass transport in the porous anode and cathode is formulated based on multi-fluid model in porous media and water and methanol crossover through the membrane are considered with the effect of diffusion, electro-osmotic drag, and convection. The modeling results agree well with the three different experimental data in an extensive range of operation conditions. A parametric study is also performed to examine... 

    Optimizing and synchronizing timetable in an urban subway network with stop-skip strategy

    , Article Journal of Rail Transport Planning and Management ; Volume 22 , 2022 ; 22109706 (ISSN) Motvallian Naeini, H ; Shafahi, Y ; SafariTaherkhani, M ; Sharif University of Technology
    Elsevier B.V  2022
    Abstract
    Stop-skipping and timetable synchronization are two effective strategies to reduce total passengers’ travel time in a transit network for subway operation. However, the majority of studies conducted on the topic do not consider stop-skipping strategy and timetable synchronization simultaneously. Thus, this article proposes a mixed-integer programming model considering both strategies simultaneously. The model is based on passenger smart-card data concerning the trains’ capacity to minimize total passengers’ waiting time and in-vehicle time and maximize the number of passengers who successfully reach their destination in a specific study horizon. Since increasing the number of trains,...