Loading...
Search for: mechanical-characteristics
0.006 seconds
Total 38 records

    Properties of concrete containing Guar gum

    , Article European Journal of Environmental and Civil Engineering ; 2020 Radvand, T ; Toufigh, V ; Sharif University of Technology
    Taylor and Francis Ltd  2020
    Abstract
    This study explores the effect of Guar gum as an eco-friendly additive on concrete mechanical characteristics. In the first stage, the slump and relative humidity tests were carried out for the fresh mortar, and tensile and compressive strengths were then determined for fifteen different mixture designs with two different curing times. Further, an exponential correlation was obtained between the ultrasonic pulse velocity and the compression test results. Additionally, scanning electron microscope (SEM) was employed to assess the bond between aggregates and Guar gum. At last, the Taguchi method and ANOVA were utilized to conduct the optimum states of the mechanical characteristics of the... 

    Properties of concrete containing Guar gum

    , Article European Journal of Environmental and Civil Engineering ; Volume 26, Issue 7 , 2022 , Pages 2736-2752 ; 19648189 (ISSN) Radvand, T ; Toufigh, V ; Sharif University of Technology
    Taylor and Francis Ltd  2022
    Abstract
    This study explores the effect of Guar gum as an eco-friendly additive on concrete mechanical characteristics. In the first stage, the slump and relative humidity tests were carried out for the fresh mortar, and tensile and compressive strengths were then determined for fifteen different mixture designs with two different curing times. Further, an exponential correlation was obtained between the ultrasonic pulse velocity and the compression test results. Additionally, scanning electron microscope (SEM) was employed to assess the bond between aggregates and Guar gum. At last, the Taguchi method and ANOVA were utilized to conduct the optimum states of the mechanical characteristics of the... 

    FE 2 investigation of aggregate characteristics effect on fracture properties of concrete

    , Article International Journal of Fracture ; Volume 226, Issue 2 , 2020 , Pages 243-261 Daneshyar, A ; Ghaemian, M ; Sharif University of Technology
    Springer Science and Business Media B.V  2020
    Abstract
    The relation between aggregate characteristics and fracture properties of concrete mixtures is investigated numerically. A homogenization-based multiscale approach is introduced based on objective failure zone averaging for heterogeneous meso-structure, and traction–separation law of fracture process zone (FPZ) instead of phenomenological constitutive model for macro-structure. A rate-dependent anisotropic damage-plastic formulation is employed to reproduce degradation process in the fine-scale from diffuse damage to localized bands, and extended finite element method (X-FEM) is utilized to resemble the localized region as a macro-crack within the coarse-scale. Different aggregate types are... 

    Wide gap brazing of inconel 738lc nickel-based superalloy: metallurgical and mechanical characteristics

    , Article Metallurgical and Materials Transactions A: Physical Metallurgy and Materials Science ; Volume 51, Issue 12 , 2020 , Pages 6283-6293 Alinaghian, H ; Farzadi, A ; Marashi, P ; Pouranvari, M ; Sharif University of Technology
    Springer  2020
    Abstract
    This paper addresses the microstructure properties relationship of wide gap brazed Inconel 738LC. Amdry 718 and a Ni-Cr-Fe-Si-B alloy were used as high melting particles (HMPs) and low melting particles (LMPs), respectively. The effect of the amount of LMPs, 30, 40, and 50 pct, on the microstructure and the shear strength of the joint, was investigated. The microstructure in the brazing zone consists of Ni-based solid solution and eutectic-type microconstituents that is nickel-rich and chromium-rich borides. Nickel-rich borides only observed in the presence of the high amount of LMPs, because of the low Cr-B ratio in the filler alloy. At the brazing/base metal interface, high diffusion of... 

    Impact of stripe unit size on performance and endurance of SSD-based RAID arrays

    , Article Scientia Iranica ; Volume 20, Issue 6 , 2013 , Pages 1978-1998 ; 10263098 (ISSN) Salmasi, F. R ; Asadi, H ; GhasemiGol, M ; Sharif University of Technology
    Sharif University of Technology  2013
    Abstract
    Over the past decades, Redundant Array of Independent Disks (RAIDs) have been configured based on mechanical characteristics of Hard Disk Drives (HDDs). With the advent of Solid-State Drives (SSDs), configurations such as stripe unit size can be far from the characteristics of SSDs. In this paper, we investigate the effect of stripe unit size on the endurance and the overall I/O performance of an SSD-based RAID array and compare the optimal stripe unit size with the suggested stripe unit sizes for HDD-based RAID. To this end, we first examine the number of extra page reads and writes imposed by write requests, and then observe the corresponding impact on the overall throughput and the... 

    Mechanical characteristics of cement paste in the presence of carbon nanotubes and silica oxide nanoparticles: An experimental study

    , Article Materials ; Volume 14, Issue 6 , 2021 ; 19961944 (ISSN) Karakouzian, M ; Farhangi, V ; Farani, M. R ; Joshaghani, A ; Zadehmohamad, M ; Ahmadzadeh, M ; Sharif University of Technology
    MDPI AG  2021
    Abstract
    Considering the remarkable characteristics of nanomaterials, previous research studies investigated the effects of incorporating different types of these materials on improving the concrete properties. However, further studies are required to evaluate the complementary hybridization and synergistic influence of nanomaterials. In this research, the combined effect of adding nano silica particles (NS) and multi-walled carbon nanotubes (MWCNT) on enhancing both the compressive and flexural strengths of the cement paste was investigated. Moreover, the morphology of the interface between cement paste and aggregates was studied by scanning electron microscopy (SEM). The mixtures were prepared... 

    Reactive friction stir processing of AA 5052-TiO2 nanocomposite: Process-microstructure-mechanical characteristics

    , Article Materials Science and Technology (United Kingdom) ; Volume 31, Issue 4 , 2015 , Pages 426-435 ; 02670836 (ISSN) Khodabakhshi, F ; Simchi, A ; Kokabi, A. H ; Sadeghahmadi, M ; Gerlich, A. P ; Sharif University of Technology
    Maney Publishing  2015
    Abstract
    Friction stir processing (FSP) is a solid state route with a capacity of preparing fine grained nanocomposites from metal sheets. In this work, we employed this process to finely distribute TiO2 nanoparticles throughout an Al-Mg alloy, aiming to enhance mechanical properties. Titanium dioxide particles (30 nm) were preplaced into grooves machined in the middle of the aluminium alloy sheet and multipass FSP was afforded. This process refined the grain structure of the aluminium alloy, distributed the hard nanoparticles in the matrix and promoted solid state chemical reactions at the interfaces of the metal/ceramic particles. Detailed optical and electron microscopic studies showed that the... 

    Experimental and numerical evaluation of the mechanical characteristics of semi-rigid saddle connections

    , Article Structural Design of Tall and Special Buildings ; Volume 31, Issue 7 , 2022 ; 15417794 (ISSN) Moghaddam, H ; Sadrara, A ; Sharif University of Technology
    John Wiley and Sons Ltd  2022
    Abstract
    Saddle connections are semi-rigid connections that are widely used in Iran. Many existing buildings contain this type of connection. The present study conducted full-scale experiments and used extensive numerical modeling to study the mechanical characteristics of saddle connections. The mechanical characteristics examined were the moment-transfer mechanism, initial stiffness, yield moment, maximum moment, and fracture rotation. The configuration and dimensions of the experimental and numerical specimens were chosen to be similar to those of saddle connections in existing buildings. A parametric study was conducted to determine the factors affecting the mechanical characteristics of these... 

    Evaluation of compressive and split tensile strength of slag based aluminosilicate geopolymer reinforced by waste polymeric materials using Taguchi method

    , Article Materials Research Express ; Volume 8, Issue 2 , February , 2021 ; 20531591 (ISSN) Khezrloo, A ; Tayebi, M ; Shafiee, A ; Aghaie, A ; Sharif University of Technology
    IOP Publishing Ltd  2021
    Abstract
    In this work, slag based aluminosilicate geopolymer was reinforced with polymeric fibers including, polyester (PES) (waste tire cap plies), polymeric particles including polyethylene terephthalate (PET) (waste water bottle), styrene-butadiene rubber (SBR) (waste tire), and polyvinyl chloride (PVC) (waste water hose). The tensile and compressive strength of the material was evaluated. Taguchi method was employed to assess the influence of the effective parameters on the mechanical characteristics of the geopolymer composite. QUALITEK-4 software was used to create the L32 orthogonal array with 192 (96+96) geopolymer specimens and 32+32 experiments. Analysis of variance (ANOVA) was utilized to... 

    On the mechanical characteristics of graphene nanosheets: A fully nonlinear modified Morse model

    , Article Nanotechnology ; Volume 31, Issue 11 , 2020 Shoghmand Nazarloo, A ; Ahmadian, M ; Firoozbakhsh, K ; Sharif University of Technology
    Institute of Physics Publishing  2020
    Abstract
    In this paper, the mechanical properties of graphene nanosheets are evaluated based on the nonlinear modified Morse model. The interatomic interactions including stretching and bending of the covalent bonds between carbon atoms, are replaced by nonlinear extensional and torsional spring-like elements. The finite element method is implemented to analyze the model under different loading conditions and linear characteristics of the graphene structure including the Young's modulus, surface modulus, shear modulus and Poisson's ratio are evaluated for various geometries and chirality where these properties are shown to be size and aspect ratio dependent. It is also found that when the dimensions... 

    Closed-Form oscillatory condition in electrical circuits containing two fractional order elements

    , Article IEEE Transactions on Circuits and Systems II: Express Briefs ; Volume 69, Issue 6 , 2022 , Pages 2687-2691 ; 15497747 (ISSN) Tavazoei, M. S ; Sharif University of Technology
    Institute of Electrical and Electronics Engineers Inc  2022
    Abstract
    Oscillatory condition in LTI dynamic systems is generally expressed as possessing purely imaginary solutions by their characteristic equations. Dealing with the class of fractional order systems, such a condition is equivalently restated as owing complex roots with specific arguments by a polynomial defined based on the system characteristic equation. The degree of this polynomial can be unboundedly high. Consequently, such statement for the oscillatory condition in fractional order systems, which is based on arguments of the roots of a polynomial with an unbounded degree, cannot be viewed as a closed-form expression. To tackle this challenge, this brief introduces an approach to obtain a... 

    The optimum combination of tool rotation rate and traveling speed for obtaining the preferable corrosion behavior and mechanical properties of friction stir welded AA5052 aluminum alloy

    , Article Materials and Design ; Volume 50 , 2013 , Pages 620-634 ; 02613069 (ISSN) Bagheri Hariri, M ; Gholami Shiri, S ; Yaghoubinezhad, Y ; Mohammadi Rahvard, M ; Sharif University of Technology
    Elsevier Ltd  2013
    Abstract
    This study attempts to find an optimum combination of the welding tool rotation rate (ω) and traveling speed (υ), concerning the corrosion and mechanical properties of Friction Stir Welded (FSWed) AA5052 Aluminum alloy. The effect of the tool speeds on the FSWed AA5052 are investigated via potentiodynamic polarization, open circuit potential (OCP) monitoring, test of the susceptibility to intergranular corrosion, weight loss, tension and micro-hardness tests. Optical microscope and Scanning Electron Microscopy (SEM) were employed for studying the morphology and analyzing the probable intergranular attacks. It was found that by increasing υ up to 200. mm/min at ω=400 rpm, the microstructural... 

    Comprehensive study on the effect of SiC and carbon additives on the pressureless sintering and microstructural and mechanical characteristics of new ultra-high temperature ZrB2 ceramics

    , Article Ceramics International ; Volume 41, Issue 9, Part A , November , 2015 , Pages 11456–11463 ; 02728842 (ISSN) Khoeini, M ; Nemati, A ; Zakeri, M ; Tamizifar, M ; Samadi, H ; Sharif University of Technology
    Elsevier Ltd  2015
    Abstract
    The combined effects of SiC and carbon additives on the densification, structure and characteristics of pressureless sintered ZrB2-SiC ceramic composites were studied. The ZrB2-SiC (1-10wt%) composite powders were mixed by 1-2wt% carbon. The prepared powder mixtures were then cold-consolidated and sintered in argon environment in the temperature range of 1800-2100°C for 2h. The constituted phases and microstructural evolutions were studied using x-ray diffraction and scanning electron microscope equipped with an energy dispersive x-ray detector. The obtained results concluded that the densification was increased by extending the sintering time and also by prior holding... 

    Improving the mechanical behavior of the adhesively bonded joints using RGO additive

    , Article International Journal of Adhesion and Adhesives ; Volume 70 , 2016 , Pages 277-286 ; 01437496 (ISSN) Marami, G ; Adib Nazari, S ; Faghidian, S. A ; Vakili Tahami, F ; Etemadi, S ; Sharif University of Technology
    Elsevier Ltd  2016
    Abstract
    In this research, Araldite 2011 has been reinforced using different weight fractions of Reduced Graphene Oxide (RGO). Fourier Transform Infrared Spectroscopy (FTIR), Scanning Electron Microscopy (SEM) and Transmission Electron Microscopy (TEM) analyses were conducted and it has been shown that introduction of the RGO greatly changes the film morphology of the neat adhesive. Uni-axial tests were carried out to obtain the mechanical characteristics of the adhesive-RGO composites. It has been observed that introducing 0.5 wt% RGO enhances the ultimate tensile strength of the composites by 30%. In addition, single lap joints using neat adhesive and adhesive-RGO composites were fabricated to... 

    Microstructural and mechanical characteristics of hybrid SiC/Cu composites with nano- and micro-sized SiC particles

    , Article Ceramics International ; 2018 ; 02728842 (ISSN) Akbarpour, M. R ; Mousa Mirabad, H ; Alipour, S ; Sharif University of Technology
    Elsevier Ltd  2018
    Abstract
    Hybrid Cu-SiC composites have been highly considered in order to achieve a combination of electrical and thermal properties along with high strength and wear resistance. However, limited investigations have ever been conducted over the effects of using hybrid (combination of nano and micro size) particles on the wear resistance behavior of these composites. Hence, in the present study, Cu-SiC nanocomposite with 4 vol% nanosize and 4 vol% microsize SiC, and Cu-SiC microcomposite with 8 vol% micro- SiC were fabricated through mechanical milling and hot pressing process. Results revealed the homogeneous dispersion of SiC particles in the matrix, high densification, and ultrafine-grain matrix... 

    An innovative high performance pervious concrete with polyester and epoxy resins

    , Article Construction and Building Materials ; Volume 228 , 2019 ; 09500618 (ISSN) Tabatabaeian, M ; Khaloo, A ; Khaloo, H ; Sharif University of Technology
    Elsevier Ltd  2019
    Abstract
    Pervious concrete (PC) has been detecting application in pavement and concrete structures such as dams, small retaining walls, and etc during the past decades. Also, in recent years, the types of resins have been introduced to apply in concrete owing to the enhancing in mechanical and durability characteristics. However, few studies have investigated the mechanical behavior of high performance pervious concrete (HPPC) incorporated by polyester and epoxy resins as polymeric composites, where ordinary cement material has been completely deleted. The purpose of this investigation is to compare the mechanical properties, permeability, and durability of HPPCs made by polymeric composites (i.e.... 

    Mechanical, rheological and oxygen barrier properties of ethylene vinyl acetate/diamond nanocomposites for packaging applications

    , Article Diamond and Related Materials ; Volume 99 , 2019 ; 09259635 (ISSN) Amini, M ; Ramazani S. A., A ; Haddadi, S. A ; Kheradmand, A ; Sharif University of Technology
    Elsevier Ltd  2019
    Abstract
    In this work, the effects of the surface-modified nanodiamond particles (NDs) on the barrier, rheological, mechanical and thermal properties of ethylene vinyl acetate (EVA) composites for the packaging applications were investigated. Fourier transform infrared spectroscopy, as well as thermal gravimetric analysis were employed to study the grafting of vinyltriethoxy silane (VTS) on the surface of NDs. Afterwards, EVA samples containing 0, 0.1, 0.5, 1, 1.5 and 2 wt% of surface-modified NDs were prepared by a two-stage process including the solution and injection processes. In order to evaluate the physicochemical, rheological, mechanical and thermal properties of the EVA/NDs samples, field... 

    Microstructural and mechanical characteristics of hybrid SiC/Cu composites with nano- and micro-sized SiC particles

    , Article Ceramics International ; Volume 45, Issue 3 , 2019 , Pages 3276-3283 ; 02728842 (ISSN) Akbarpour, M. R ; Mousa Mirabad, H ; Alipour, S ; Sharif University of Technology
    Elsevier Ltd  2019
    Abstract
    Hybrid Cu-SiC composites have been highly considered in order to achieve a combination of electrical and thermal properties along with high strength and wear resistance. However, limited investigations have ever been conducted over the effects of using hybrid (combination of nano and micro size) particles on the wear resistance behavior of these composites. Hence, in the present study, Cu-SiC nanocomposite with 4 vol% nanosize and 4 vol% microsize SiC, and Cu-SiC microcomposite with 8 vol% micro- SiC were fabricated through mechanical milling and hot pressing process. Results revealed the homogeneous dispersion of SiC particles in the matrix, high densification, and ultrafine-grain matrix... 

    Bilayered heparinized vascular graft fabricated by combining electrospinning and freeze drying methods

    , Article Materials Science and Engineering C ; Volume 94 , 2019 , Pages 1067-1076 ; 09284931 (ISSN) Khayat Norouzi, S ; Shamloo, A ; Sharif University of Technology
    Elsevier Ltd  2019
    Abstract
    Small diameter vascular grafts (<6 mm) are highly demanded for patients suffering from severe occluded arteries to be used as a bypass or substituted conduit. Fabricating a graft with appropriate structural, mechanical and cell growth properties which has simultaneously anti-thrombogenic trait is a challenge nowadays. Here, we proposed a bilayer heparinized vascular graft that can mimic the structural and mechanical characteristics close to those of the native coronary artery by combining electrospinning and freeze drying methods. In this study, the inner layer was made by co-electrospinning of synthetic polymer, poly-caprolactone (PCL) and the natural polymer, gelatin (Gel). Also, heparin... 

    Bilayered heparinized vascular graft fabricated by combining electrospinning and freeze drying methods

    , Article Materials Science and Engineering C ; Volume 94 , 2019 , Pages 1067-1076 ; 09284931 (ISSN) Khayat Norouzi, S ; Shamloo, A ; Sharif University of Technology
    Elsevier Ltd  2019
    Abstract
    Small diameter vascular grafts (<6 mm) are highly demanded for patients suffering from severe occluded arteries to be used as a bypass or substituted conduit. Fabricating a graft with appropriate structural, mechanical and cell growth properties which has simultaneously anti-thrombogenic trait is a challenge nowadays. Here, we proposed a bilayer heparinized vascular graft that can mimic the structural and mechanical characteristics close to those of the native coronary artery by combining electrospinning and freeze drying methods. In this study, the inner layer was made by co-electrospinning of synthetic polymer, poly-caprolactone (PCL) and the natural polymer, gelatin (Gel). Also, heparin...