Loading...
Search for: mechanical-performance
0.007 seconds
Total 52 records

    3D Bioprinting of oxygenated cell-laden gelatin methacryloyl constructs

    , Article Advanced Healthcare Materials ; Volume 9, Issue 15 , 2020 Erdem, A ; Darabi, M. A ; Nasiri, R ; Sangabathuni, S ; Ertas, Y. N ; Alem, H ; Hosseini, V ; Shamloo, A ; Nasr, A. S ; Ahadian, S ; Dokmeci, M. R ; Khademhosseini, A ; Ashammakhi, N ; Sharif University of Technology
    Wiley-VCH Verlag  2020
    Abstract
    Cell survival during the early stages of transplantation and before new blood vessels formation is a major challenge in translational applications of 3D bioprinted tissues. Supplementing oxygen (O2) to transplanted cells via an O2 generating source such as calcium peroxide (CPO) is an attractive approach to ensure cell viability. Calcium peroxide also produces calcium hydroxide that reduces the viscosity of bioinks, which is a limiting factor for bioprinting. Therefore, adapting this solution into 3D bioprinting is of significant importance. In this study, a gelatin methacryloyl (GelMA) bioink that is optimized in terms of pH and viscosity is developed. The improved rheological properties... 

    Effects of nano-clay particles on the short-term properties of self-compacting concrete

    , Article European Journal of Environmental and Civil Engineering ; Volume 0 - Issue 0 , Oct , 2015 , Page 1-21 ; 19648189 (ISSN) Hosseini, P ; Afshar, A ; Vafaei, B ; Booshehrian, A ; Molaei Raisi, E ; Esrafili, A ; Sharif University of Technology
    Taylor and Francis Ltd  2015
    Abstract
    The properties of self-compacting concrete (SCC) can be manipulated by the addition of nano-montmorillonite (NMMT) clays. This paper presents the results of an experimental investigation on incorporating small dosages of NMMT clays (.25, .50, .75 and 1.00% addition by mass of total cementitious material) into SCC. Tests were conducted on fresh and hardened specimens to measure workability (by slump flow, V-funnel and L-box), mechanical (by compressive and splitting tensile strengths), durability (electrical resistivity and water penetration) and microstructural (X-ray diffraction and scanning electron microscopy) properties of control and NMMT-reinforced SCCs. The results showed that the... 

    Influence of hard inclusions on microstructural characteristics and textural components during dissimilar friction-stir welding of an PM Al–Al2O3–SiC hybrid nanocomposite with AA1050 alloy

    , Article Science and Technology of Welding and Joining ; 2016 , Pages 1-16 ; 13621718 (ISSN) Khodabakhshi, F ; Simchi, A ; Kokabi, A. H ; Gerlich, A. P ; Nosko, M ; Švec, P ; Sharif University of Technology
    Taylor and Francis Ltd  2016
    Abstract
    Owing to the advantages of nanocomposites for structural applications, we present microstructural evolutions and texture development during dissimilar friction stir welding (DFSW) of an Al-matrix hybrid nanocomposite (Al-2 vol.-% Al2O3-2 vol.-% SiC) with AA1050. It is shown that DFSW can successfully be performed at a rotating speed of 1200 rev min−1 and a transverse speed of 50 mm min−1 while locating the nanocomposite at retreating side. Formation of macro-, micro-, and nano-mechanical interlocks between dissimilar base materials (BMs) as a result of FSW tool stirring action possessed an impact influence on the mechanical performance of dissimilar welds. Electron microscopy revealed... 

    Ferritic-austenitic stainless steels dissimilar resistance spot welds: Metallurgical and failure characteristics

    , Article Science and Technology of Welding and Joining ; Volume 21, Issue 6 , 2016 , Pages 438-445 ; 13621718 (ISSN) Pouranvari, M ; Khorramifar, M ; Hoveida Marashi, S. P ; Sharif University of Technology
    Taylor and Francis Ltd  2016
    Abstract
    The paper addresses the microstructure and failure characteristics of dissimilar resistance spot welds between austenitic stainless steel and ferritic stainless steel. The fusion zone (FZ) of dissimilar welds exhibited complex microstructure consisting of ferrite, austenite and martensite. The development of this triplex structure in the FZ was explained by analysing the phase transformation path and austenite stability. Results showed that all dissimilar welds failed in partial thickness-partial pull-out failure mode. It was shown that the fraction of the nugget fracture of the weld is reduced by increasing the FZ size improving the mechanical performance of the weld. Peak load and energy... 

    Influence of hard inclusions on microstructural characteristics and textural components during dissimilar friction-stir welding of an PM Al–Al2O3–SiC hybrid nanocomposite with AA1050 alloy

    , Article Science and Technology of Welding and Joining ; Volume 22, Issue 5 , 2017 , Pages 412-427 ; 13621718 (ISSN) Khodabakhshi, F ; Simchi, A ; Kokabi, A. H ; Gerlich, A. P ; Nosko, M ; Švec, P ; Sharif University of Technology
    Taylor and Francis Ltd  2017
    Abstract
    Owing to the advantages of nanocomposites for structural applications, we present microstructural evolutions and texture development during dissimilar friction stir welding (DFSW) of an Al-matrix hybrid nanocomposite (Al-2 vol.-% Al2O3-2 vol.-% SiC) with AA1050. It is shown that DFSW can successfully be performed at a rotating speed of 1200 rev min−1 and a transverse speed of 50 mm min−1 while locating the nanocomposite at retreating side. Formation of macro-, micro-, and nano-mechanical interlocks between dissimilar base materials (BMs) as a result of FSW tool stirring action possessed an impact influence on the mechanical performance of dissimilar welds. Electron microscopy revealed... 

    Effects of nano-clay particles on the short-term properties of self-compacting concrete

    , Article European Journal of Environmental and Civil Engineering ; Volume 21, Issue 2 , 2017 , Pages 127-147 ; 19648189 (ISSN) Hosseini, P ; Afshar, A ; Vafaei, B ; Booshehrian, A ; Molaei Raisi, E ; Esrafili, A ; Sharif University of Technology
    Taylor and Francis Ltd  2017
    Abstract
    The properties of self-compacting concrete (SCC) can be manipulated by the addition of nano-montmorillonite (NMMT) clays. This paper presents the results of an experimental investigation on incorporating small dosages of NMMT clays (.25,.50,.75 and 1.00% addition by mass of total cementitious material) into SCC. Tests were conducted on fresh and hardened specimens to measure workability (by slump flow, V-funnel and L-box), mechanical (by compressive and splitting tensile strengths), durability (electrical resistivity and water penetration) and microstructural (X-ray diffraction and scanning electron microscopy) properties of control and NMMT-reinforced SCCs. The results showed that the... 

    Understanding the factors controlling the interfacial failure strength of advanced high-strength steel resistance spot welds: hardness vs. fracture toughness

    , Article Science and Technology of Welding and Joining ; Volume 23, Issue 6 , 2018 , Pages 520-526 ; 13621718 (ISSN) Pouranvari, M ; Sharif University of Technology
    Taylor and Francis Ltd  2018
    Abstract
    The failure of advanced high-strength steels’ spot welds is a critical issue for automotive crashworthiness. This paper deals with understanding the underlying factors of the tensile-shear strength of automotive steels’ resistance spot welds during interfacial failure. It was found that the ratio of the fracture toughness to the hardness of the fusion zone is the critical factor governing the interfacial failure mechanism: ductile shear failure (controlled by the fusion zone hardness) vs. cleavage crack propagation (controlled by the fracture toughness). This clarification could pave the way for more accurate modelling of interfacial failure of advanced steel resistance spot welds and shed... 

    Projection friction stir spot welding: a pathway to produce strong keyhole-free welds

    , Article Science and Technology of Welding and Joining ; 2018 ; 13621718 (ISSN) Mousavizade, M ; Pouranvari, M ; Sharif University of Technology
    Taylor and Francis Ltd  2018
    Abstract
    This paper introduces a novel facile method, called projection friction stir spot welding, to produce a keyhole-free friction stir welds based on a pinless tool method involving using a specially designed projection on the surface of the backing anvil. The projection plays two key roles contributing to the bonding mechanism and the joint strength: (i) encouraging the material flow perpendicular to the joint interface and (ii) bending the joint interface at the edge of the projection. The process enables pathway to produce keyhole-free welds with superior mechanical performance in steel sheets compared to the other spot welding techniques. © 2018, © 2018 Institute of Materials, Minerals and... 

    Projection friction stir spot welding: a pathway to produce strong keyhole-free welds

    , Article Science and Technology of Welding and Joining ; Volume 24, Issue 3 , 2019 , Pages 256-262 ; 13621718 (ISSN) Mousavizade, S. M ; Pouranvari, M ; Sharif University of Technology
    Taylor and Francis Ltd  2019
    Abstract
    This paper introduces a novel facile method, called projection friction stir spot welding, to produce a keyhole-free friction stir welds based on a pinless tool method involving using a specially designed projection on the surface of the backing anvil. The projection plays two key roles contributing to the bonding mechanism and the joint strength: (i) encouraging the material flow perpendicular to the joint interface and (ii) bending the joint interface at the edge of the projection. The process enables pathway to produce keyhole-free welds with superior mechanical performance in steel sheets compared to the other spot welding techniques. © 2018, © 2018 Institute of Materials, Minerals and... 

    Improving appearance and mechanical strength of aluminum-polypropylene/talc composite friction stir joint using a novel tool design

    , Article International Journal of Advanced Manufacturing Technology ; Volume 121, Issue 5-6 , 2022 , Pages 3717-3730 ; 02683768 (ISSN) Shiravi, H ; Movahedi, M ; Ozlati, A ; Sharif University of Technology
    Springer Science and Business Media Deutschland GmbH  2022
    Abstract
    In this research, friction stir joining of aluminum-polypropylene/talc composite was investigated due to the numerous applications of aluminum-polymer joints in automotive and aerospace industry. A novel tool design, including a rotary/stationary holder, was used to improve the appearance and mechanical performance of friction stir lap joints by preventing the mixed molten polymer and aluminum particles from exiting the stirred zone. Effect of tool transverse speed on the joint microstructure and strength was investigated. Using the rotary/stationary holder, tensile-shear strength of the joints increased (by ~ 45 to ~ 220% at various transverse speeds). Since during the tensile-shear test... 

    Mechanical properties and strain-induced martensite transformation in cold rolling of 304l stainless steel plate

    , Article Journal of Materials Engineering and Performance ; Volume 27, Issue 11 , 2018 , Pages 6155-6165 ; 10599495 (ISSN) Abedi, F ; Serajzadeh, S ; Sharif University of Technology
    Springer New York LLC  2018
    Abstract
    In this work, cold rolling behavior of stainless steel 304L is investigated and the effects of different process parameters on the occurrence of strain-induced martensite and mechanical properties are studied. The rolling experiments are conducted under different rolling speeds and reductions in which a set of samples is deformed at room temperature and the other set is first cooled to the temperature of − 10 °C and then rolled. Afterward, the developed microstructures and mechanical properties of the rolled steel are evaluated employing different testing techniques. In order to justify the results, mathematical modeling of cold rolling operation is also performed using Abaqus/Explicit to... 

    Modeling the size dependent pull-in instability of cantilever nano-switch immersed in ionic liquid electrolytes using strain gradient theory

    , Article Scientia Iranica ; Volume 23, Issue 3 , 2016 , Pages 976-989 ; 10263098 (ISSN) Kanani, A ; Koochi, A ; Farahani, M ; Rouhi, E ; Abadyan, M ; Sharif University of Technology
    Sharif University of Technology  2016
    Abstract
    It is well recognized that size-effect often plays a significant role in the mechanical performance of nano-structures. Herein, strain gradient continuum elasticity is employed to investigate the size dependent pull-in instability of the cantilever nanoactuators immersed in ionic liquid electrolyte. The presence of dispersion forces, i.e. Casimir and van der Waals field, is considered in the theoretical model as well as the double-layer electrochemical attraction. To solve the non-linear constitutive equation of the system, two approaches, i.e. the Rayleigh Ritz Method (RRM) and the numerical solution method, are employed. Impact of the size dependency and dispersion forces on the... 

    Studying the effect of kinematical pattern on the mechanical performance of paraplegic gait with reciprocating orthosis

    , Article Proceedings of the Institution of Mechanical Engineers, Part H: Journal of Engineering in Medicine ; Volume 226, Issue 8 , 2012 , Pages 600-611 ; 09544119 (ISSN) Nakhaee, K ; Farahmand, F ; Salarieh, H ; Sharif University of Technology
    SAGE  2012
    Abstract
    Paraplegic users of mechanical walking orthoses, e.g. advanced reciprocating gait orthosis (ARGO), often face high energy expenditure and extreme upper body loading during locomotion. We studied the effect of kinematical pattern on the mechanical performance of paraplegic locomotion, in search for an improved gait pattern that leads to lower muscular efforts. A three-dimensional, four segment, six-degrees-of-freedom skeletal model of the advanced reciprocating gait orthosis-assisted paraplegic locomotion was developed based on the data acquired from an experimental study on a single subject. The effect of muscles was represented by ideal joint torque generators. A response surface analysis... 

    Utilization of gene expression programming for modeling of mechanical performance of titanium/carbonated hydroxyapatite nanobiocomposites: The combination of artificial intelligence and material science

    , Article International Journal of Engineering, Transactions A: Basics ; Volume 34, Issue 4 , 2021 , Pages 948-955 ; 17281431 (ISSN) Shojaei, M. R ; Khayati, G. R ; Hasani, A ; Sharif University of Technology
    Materials and Energy Research Center  2021
    Abstract
    Titanium carbonated hydroxyapatite (Ti/CHA) nanobiocomposites have extensive biological applications due to the excellent biocompatibility and similar characteristics to the human bone. Ti/CHA nanobiocomposite has good biological properties but it suffer from diverse characteristics especially in hardness, Young's modulus, apparent porosity and relative density. This investigation is an attempt to propose the predictive models using gene expression programming (GEP) to estimate these characteristics. In this regards, GEP is used to model and compare the effect of practical variables including pressure, Ti/CHA contents and sintering temperature on their monitored properties. To achieve this... 

    Welding metallurgy of stainless steels during resistance spot welding part II –heat affected zone and mechanical performance

    , Article Science and Technology of Welding and Joining ; Volume 20, Issue 6 , 2015 , Pages 512-521 ; 13621718 (ISSN) Alizadeh Sh, M ; Pouranvari, M ; Marashi, S. P. H ; Sharif University of Technology
    Maney Publishing  2015
    Abstract
    Implementation of new materials in automotive body-in-white requires through knowledge of their metallurgical response to welding process thermal cycle. This two-part paper aims at understanding the physical and mechanical metallurgy of stainless steels, as interesting candidates for automotive application, during resistance spot welding. The second part addresses the phase transformations in the heat affected zone of three types of stainless steels including austenitic, ferritic and duplex steels. Failure modes and mechanical properties of stainless steel resistance spot welds are discussed. The peak load and energy absorption of stainless steel resistance spot welds are compared with... 

    Reinforcing mechanisms of carbon nanotubes and high structure carbon black in natural rubber/styrene-butadiene rubber blend prepared by mechanical mixing-effect of bound rubber

    , Article Polymer International ; Volume 64, Issue 11 , July , 2015 , Pages 1627-1638 ; 09598103 (ISSN) Ahmadi, M ; Shojaei, A ; Sharif University of Technology
    John Wiley and Sons Ltd  2015
    Abstract
    The reinforcing effect of high structure carbon black (HSCB) and multi-walled carbon nanotubes (MWCNTs) on natural rubber/styrene-butadiene rubber blend processed using mechanical mixing was comparatively investigated. In-depth analysis by dynamic mechanical analysis, the Eggers-Schummer model and Medalia's relationship showed that HSCB aggregates provided large internal pores leading to significant immobilized macromolecules in filled rubber. Additionally, a tubular immobilized rubber layer with a thickness of 8nm was estimated for the rubber/MWCNT system based on dynamic mechanical analysis data. The mechanical performance of the HSCB filled blend was higher than that of the MWCNT filled... 

    Co-crystallization in ternary polyethylene blends: tie crystal formation and mechanical properties improvement

    , Article Polymer International ; Volume 65, Issue 12 , 2016 , Pages 1405-1416 ; 09598103 (ISSN) Eslamian, M ; Bagheri, R ; Pircheraghi, G ; Sharif University of Technology
    John Wiley and Sons Ltd  2016
    Abstract
    Understanding the co-crystallization behavior of ternary polyethylene (PE) blends is a challenging task. Herein, in addition to co-crystallization behavior, the rheological and mechanical properties of melt compounded high density polyethylene (HDPE)/low density polyethylene (LDPE)/Zeigler − Natta linear low density polyethylene (ZN-LLDPE) blends have been studied in detail. The HDPE content of the blends was kept constant at 40 wt% and the LDPE/ZN-LLDPE ratio was varied from 0.5 to 2. Rheological measurements confirmed the melt miscibility of the entire blends. Study of the crystalline structure of the blends using DSC, wide angle X-ray scattering, small angle X-ray scattering and field... 

    Role of nanoclay distribution on morphology and mechanical behavior of rubber-modified polyolefins

    , Article Journal of Applied Polymer Science ; Volume 132, Issue 20 , 2015 ; 00218995 (ISSN) Babaienejad, M ; Bagheri, R ; Sharif University of Technology
    John Wiley and Sons Inc  2015
    Abstract
    Polyolefin blends have attracted great attention for years because of their improved physical and mechanical properties; especially when micro/nanofillers are present in the compound. Previous investigations have proven that incorporation of small amounts of nanoclay can enhance physical and mechanical properties of the polymer. This research has focused on the role of clay distribution on morphology and mechanical properties of ternary nanocomposites containing a rubbery phase. High-density polyethylene/ethylene vinyl acetate/clay (HDPE/EVA/clay) is opted as a typical model for this purpose. EVA is selected to act as both compatibilizer, because of having polar vinyl groups, and... 

    Facile synthesis of extremely biocompatible double-network hydrogels based on chitosan and poly(vinyl alcohol) with enhanced mechanical properties

    , Article Journal of Applied Polymer Science ; Volume 135, Issue 7 , 2018 ; 00218995 (ISSN) Pourjavadi, A ; Tavakoli, E ; Motamedi, A ; Salimi, H ; Sharif University of Technology
    John Wiley and Sons Inc  2018
    Abstract
    An easy and ecofriendly method for designing double-network (DN) hydrogels based on chitosan and poly(vinyl alcohol) (PVA) with high mechanical performance is described. When covalent bonds in the networks are used as crosslinking agents in the achievement of a higher mechanical strength, the irreversible deformation of these hydrogels after a large force is applied is still one of the most important obstacles. To overcome this problem, we used physical crosslinking for both networks. The mechanical strength, surface morphology, and cytotoxicity of the films were studied by tensile testing, scanning electron microscopy analysis, and an MTT assay. The synthesized chitosan–PVA DN hydrogels... 

    Achieving high mechanical performance in protrusion friction stir spot welding (PFSSW) of DQSK steel compared to other techniques

    , Article Materials Research Express ; Volume 5, Issue 10 , 2018 ; 20531591 (ISSN) Shahrabadi, A. R ; Mousavizade, S. M ; Ezatpour, H. R ; Pouranvari, M ; Sharif University of Technology
    Institute of Physics Publishing  2018
    Abstract
    Protrusion friction spot stir welding (PFSSW) was introduced as a novel method to produce keyhole-free welds of a drawing quality special killed low carbon steel (DQSK). The effects of welding parameters such as tool rotation speed and plunging depth were investigated on the mechanical properties and metallurgical aspects. The sheet/sheet joint interface of the welds produced by PFSSW was visible and non-planar compared to the conventional FSSW method. Microstructure and hardness were affected by dynamic recrystallization and transformation hardening in the stir zone. Hardness value of the stir zone produced by the present work was much lower than that produced by resistance spot welding...