Loading...
Search for: mechanical-properties
0.016 seconds
Total 874 records

    Parametric Investigation on Microstructure and Mechanical Properties of Ultrasonic Spot welded Aluminium and Copper Sheets

    , M.Sc. Thesis Sharif University of Technology Yosefi, Ali (Author) ; Kokabi, Amir Hossain (Supervisor) ; Abedini, Rezvan (Co-Supervisor)
    Abstract
    Ultrasonic metal welding is a solid state welding process and is widely used in welding the connections of lithium-ion battery batteries in hybrid and plug-in hybrid vehicles. This welding process has advantages over fusion welding processes such as; Shorter time, no heat affected area, optimal energy consumption, cheaper equipment and no harm to the environment. The aim of this study was to investigate the effect and optimization of time, normal pressure and oscillation amplitude parameters in order to achieve the maximum tensile-shear test force and T-peel test in the dissimilar welding of 1050 aluminum and copper (purity above 99.9%). In order to achieve the optimal state of welding... 

    Investigation of Effect of Hot rolling Parameters on Mechanical and Physical Properties of a Fe-Ni-Co Alloy

    , M.Sc. Thesis Sharif University of Technology Yazdani, Mohammad (Author) ; Karimi Taheri, Ali (Supervisor) ; abbasi, mehdi (Supervisor)
    Abstract
    Fe-29Ni-17Co alloy with commercial name “Kovar” is an alloy with low expansion coefficient. The main specification of this alloy is to maintain this property at the high temperatures that is used in sealing of glass-metal. Achieving to desirable physical properties associated with suitable mechanical properties is the purpose of related industries. However the effect of cold work and heat treatment was studied on the physical properties of this alloy, there is no report about the effect of the hot work. Thus, in this investigation, the effect of the hot work on the physical and mechanical properties of Kovar was studied. At first, slabs of Kovar alloy were cast and remelted. Then,... 

    Investigation and Characterization of Circulating tumor Cells (CTCs) by the Microfluidics Systems

    , M.Sc. Thesis Sharif University of Technology Yari, Alireza (Author) ; Vossoughi, Manoucher (Supervisor) ; Alemzadeh, Iran (Supervisor) ; Shamloo, Amir (Supervisor)
    Abstract
    Cancer is the second leading cause of death among humans as one of the major human concerns. More than 500,000 people die of cancer each year in the United States alone. Cancer mortality is mainly due to cancer metastasis. Metastasis is the escape of cancer cells from a primary tumor, the circulation of cells in the circulatory system (CTSs), the penetration of/from vessel wall, and the formation of a secondary tumor. It is still not clear how the cells survive in the circulatory system, along with the mechanical pressures and stresses that exist in the body's capillary channals. In this study, a microcirculation model for circulating cells with barriers was designed and constructed by the... 

    Effect of Martensite Volume Fraction on Fatigue Properties of Ferrite- Bainite- Martensite Triple Phase Steel

    , M.Sc. Thesis Sharif University of Technology Goudarzi, Ahmad (Author) ; Ekrami, Ali Akbar (Supervisor)
    Abstract
    The introduction of multi phase steels in recent years resulted in a considerable increase in development of some industries such as automobiles. By inducing soft and hard phases together, these steels could bring better mechanical properties than classical ones. Recent studies on 4340 ferritic- bainitic and ferritic- martensitic dual phase steels, indicate that 34 volume percent ferrite with hard phase, has the best combination of strength, toughness and fatigue properties. In present research, by proper heat treatment on a 4340 steel, it is tried to prepare specimens ferritic- bainitic- martensitic triple phase steels with 34 volume percent of ferrite and different percents of martensite.... 

    Manufacturing and Characterization of Bone Scaffold Based on TCP

    , M.Sc. Thesis Sharif University of Technology Gorgin Karaji, Zahra (Author) ; Bagheri, Reza (Supervisor)
    Abstract
    Bone scaffolds are combinations of several materials, for achieving suitable properties and usage for replacing with defected bone. In this study, TCP/Agarose scaffolds are fabricated by two different approaches. The first one is using polymer sponge and gel casting technique and the other one is using foaming agent in order to obtain scaffolds with same porosity. The results show that in spite of same structure and porosity, scaffolds have different mechanical properties due to their different morphologies. Compressive strength of the scaffolds which were fabricated using polymer sponge method is 2.25MPa and elastic modulus is 56.8MPa. After coating with Agarose, compressive strength... 

    Investigation into the Effect of Adding Sr on Microstructure, Mechanical Properties and Biodegradability Behavior of Biodegradable Mg-Zn-Sr Alloys

    , M.Sc. Thesis Sharif University of Technology Gerashi, Ehsan (Author) ; Alizadeh, Reza (Supervisor)
    Abstract
    Biodegradable implants are new generation of implants that require no secondary surgery for their removal. Mg exhibits a great potential to be used as the biodegradable implant. However, mechanical properties and biocorrosion behavior of Mg are not suitable for being used as biodegradable implants. In this study, effects of Sr additions, heat treatments (T4 and T6), and multi-directional forging on the microstructural evolution, mechanical properties and biocorrosion behavior of Mg-4Zn-xSr alloys, and also the effect of hydrothermal coating on the biocorrosion behavior of Mg-4Zn-0.3Sr alloy were investigated. Potentiodynamic polarization and hydrogen evolution methods were used to... 

    Fabrication of “Boron-Clay-Polymer" and "Lead-Clay-Polymer" Nanocomposites for Radiation Shielding of Neutron and Gamma Rays

    , M.Sc. Thesis Sharif University of Technology Kiani, Mohammad Amin (Author) ; Outokesh, Mohammad (Supervisor) ; Ahmadi, Javad (Supervisor) ; Mohammadi, Agheil (Co-Advisor)
    Abstract
    In this study, epoxy resin has been modified by nano-clay additives using direct mixing method and epoxy-clay nanocomposites were designed and produced with optimized percentage of clay content. By adding the powder of born carbide and lead oxide in nanocomposites new compounds are obtained. The results are used for protection against neutron and gamma rays, respectively. After preparation of epoxy-clay-born carbide and epoxy- clay-lead oxide nanocomposite the effects of irradiation and carbon fiber on mechanical and thermal properties of nanocomposites were examined. The Nanocomposites were exposed to Electron Beam Irradiation (EBI) in 100 and 500 kGy doses to investigate the effect of... 

    Effect of Nitrogen Addition on the Microstructure and Mechanical Properties of a Pearlitic Matrix Gray Cast Iron

    , M.Sc. Thesis Sharif University of Technology Kamoori Yousefabad, Elham (Author) ; Davami, Parviz (Supervisor)
    Abstract
    Gray Cast Irons are the most important engineering Cast Irons. Gray color of fracture surface and morphology of graphite flakes are the reasons of this naming. Gray iron is relatively cheap with easy production; because of wide chemical composition range rather other cast irons. Furthermore, shrinkage and feeding in the casts from gray iron, besides surface finishing by machining are easy. The other properties of gray iron are resistance against sliding wear, high thermal conduction coefficient, low module of elasticity and thermally shock resistance. In this research, the effects of added nitrogen as an alloying element and cooling rate on microstructure, hardness and tensile properties of... 

    3D Bioprinting of Amniotic Membrane-Based Nanocomposite for Tissue Engineering Applications: Evaluation of Rheological, Mechanical and Biological Properties

    , Ph.D. Dissertation Sharif University of Technology Kafili, Golara (Author) ; Simchi, Abdolreza (Supervisor) ; Tamjid, Elnaz (Supervisor) ; Niknejad, Hassan (Co-Supervisor)
    Abstract
    3D bioprinting is an additive manufacturing method that facilitates the deposition of the desired cells and biomaterials at any pre-defined location. This technique also enables control over the internal structure and external dimensions of printed constructs. Among various biomaterials used as bioinks, the bioinks derived from decellularized extracellular matrixes (dECMs) have attracted significant attention due to their bioactivity and being a rich source of biochemical cues. Here in this study, the decellularized amnion membrane (dAM) has been selected as the main component of the bioink formulation because of its biocompatibility, low immunogenicity, antibacterial property, abundance,... 

    Macrostructure and Mechanical Properties of Structural Composite of Aluminum and Stainless Steel Net Processed by Casting and Rolling

    , M.Sc. Thesis Sharif University of Technology Keshavarz Kermani, Ali (Author) ; Akbarzadeh, Abbas (Supervisor)
    Abstract
    Having the high strength to weight ratio has been made the composites special materials very important these days. The low density of aluminum and its appropriate corrosion properties make it a good choice for metallic matrix. Also, the high tensile strength of stainless steel fibers can helps as a reinforcement in the composite to improve its mechanical properties. Enhancing the bonding of composite’s components can helps it to develop its properties. Casting is an appropriate process for making an aluminum matrix containing steel fibers as reinforcement in a structural composite. In addition, rolling process can remove so many defects made by casting, and improve joining of fibers and... 

    Failure Analysis in Conical Structures Made by Tape Winding Method under Cold and Hot Thermal Load

    , M.Sc. Thesis Sharif University of Technology Karimian, Mehdi (Author) ; Hosseini Kordkheili, Ali (Supervisor) ; Parviz, Hadi (Co-Supervisor)
    Abstract
    The aim of this study is numerical simulation of progerasive failure in conical structures that manufactured by tape-winding proceses in various temperatures. For this purpose, flat laminates by tape-winding proceses firstly manufactured using carbon/phenolic prepreg tape. Then tensile, compression, shear and thermal expansion coefficient specimens are cut from these laminates. Tensile and compression test are done on these specemens in fiber and matrix directions in temperature range 23-200℃ and stress-strain and stress-time curves are achavied. Using these curves tensile elastic modulus in fiber and matrix directions and Poisson's ratio are obtained in room temperature. Also tensile and... 

    Effect Of Mechanical Milling on the Microstructure Development and Mechanical Properties of Gas-Atomized Al-20Si-5Fe-2Ni Alloy

    , M.Sc. Thesis Sharif University of Technology Karimi, Manoochehr (Author) ; Simchi, Abdolreza (Supervisor) ; Maddah Hosseini, Hamid Reza (Supervisor)
    Abstract
    In this work, hypereutectic Al-20Si-5Fe-2Ni powder was prepared by gas atomizing method. The alloy was fabricated by melting of commercially pure metals and re-melting at approximately 200 K above the liquidus temperature. The molten alloy was then atomized by nitrogen at a gas pressure of 0.8 MPa. The nozzle diameter was 3 mm. The aluminum alloy powders were milled under pure Argon atmosphere with a ball to powder ratio of 10:1 in a planetary ball for 12, 24, 36 and 48 hours. The gas-atomized and milled powders were then consolidated by cold sintering method. Microstructure and phase analysis were performed by SEM and XRD technique. Mechanical properties were evaluated by microhardness and... 

    Preparation and Characterization of Morphology and Mechanical Properties of PA6/Nanodiamond Composites

    , M.Sc. Thesis Sharif University of Technology Karami, Pooria (Author) ; Shojaei, Akbar (Supervisor)
    Abstract
    Polyamide or Nylon, due to its remarkable mechanical and tribological properties, has many engineering applications. Hence, improving the properties can develop the polyamide applications. In this study, Polyamide 6 (PA6) has been used as matrix with nanodiamond (ND) reinforcement. Spherical shape, chemically active surface as well as remarkable mechanical properties make nanodiamond an ideal candidate for improving polymers properties. Poor dispersion and agglomeration are present however major problems in achieving improved properties in nanocomposites. To deal with this problem, nanodiamonds were surface modified using Ethylenediamine (EDA) and Hexamethylenediamine (HMD). Nanocomposite... 

    Investigation of the Effect of Warm Rolling on Microstructure and Mechanical Properties of Severely Deformed Aluminum Sheets

    , M.Sc. Thesis Sharif University of Technology Charkhesht, Vahid (Author) ; Kazeminezhad, Mohsen (Supervisor)
    Abstract
    Lots of researches have been carried out on the severe plastic deformation (SPD) and annealing of the aluminum up to now. Due to the different annealing behavior of the severely deformed metals and on the other hand the necessity to the rollig for producing the thin SPD sheets, so the purpose of the recent study is producing the thinned sheets with applying the temperature simultaneously. Dislocations density increases by SPD so it confines their movement and cause to the higher strength of the material. Rolling of the SPDed sheets increase the mechanical properties. Grain boundary energy increases with this mechanical improvement and results in lower ductility. So, it is necessary to... 

    Improvement of Mechanical Properties of a Mg-Zn alloy using the Micro Alloying Elements

    , M.Sc. Thesis Sharif University of Technology Cheraghi Heyvedi, Hamid (Author) ; Karimi Taheri, Ali (Supervisor)
    Abstract
    The development of new wrought magnesium alloys for automotive industry has increased in recent years due to their high potential as structuralmaterials for low density and high strength/weight ratio demands. However, the poor mechanical properties of the magnesium alloys have led tosearch a new kind of magnesium alloys for better strength and ductility.In this research,a new type of magnesium alloy based on Mg-Zn-Si-Ca system has been developed using the permanent gravity casting process. For comparison, an alloy without Siby the same method was also produced. The effects of trace Si addition on the microstructure and mechanical properties in magnesium alloy with composition of... 

    Extraction of Mechanical Properties of Polymer Composites Reinforced with Three-Dimensional Orthogonal Woven Fabrics

    , M.Sc. Thesis Sharif University of Technology Pilafkan, Neda (Author) ; Hosseini KordKheili, Ali (Supervisor) ; Saleh Ahmadi, Mohammad (Co-Supervisor)
    Abstract
    The two-dimensional composites are benefited from different advantageous; however, they may not be good enough in terms of strength along the thickness, manufacturing speed, cost management and resistance to delamination. To overcome these unpleasant challenges, the three-dimensional composites are defined as having a 3D pattern of yarns which not only includes yarns along the length and width, but also in thickness or vertical direction. One of these common types of composites is 3D-orthogonal woven composites. In this comprehensive research study, the 3D orthogonal woven composite modelling is conducted through a specialized and advanced software, TexGen software. Then Voxel mesh were... 

    Surface Modification of Nanosilica with Glycidoxypropyltrimethoxysilane and Investigating its Effect on the Physical and Mechanical Properties of Epoxy Resin

    , M.Sc. Thesis Sharif University of Technology Poorkazem, Kianoosh (Author) ; Mahmoudi Hashemi, Mohammad (Supervisor) ; Bastani, Saeed (Supervisor)
    Abstract
    In the first stage of this research, different amounts of glycidoxypropyltrimethoxysilane (GPS) were grafted as a coupling agent on the surface of nanosilica particles (NS). Surface characterization was done by Particle Size Analyzer and Thermal Gravimetric Analyzer (TGA) and that way, samples were distinguished from each other. More comparisons were taken by Scanning Electron Microscopy (SEM) and Fourier Transform Infrared Spectroscopy (FTIR). Then the different amounts of modified NS were added into the matrix of an epoxy resin and the physical and mechanical properties of samples were tested with Abrasion Resistance test, Tensile Strength test, Thermal Mechanical Analysis (TMA),... 

    Weldability Survey of a Cast NhAl-based Intermetallic Alloy

    , M.Sc. Thesis Sharif University of Technology Pour Ali Akbar, Hesam (Author) ; Kokabi, Amir Hossein (Supervisor)
    Abstract
    IC221M is a cast Ni3AI-based intermetallic alloy which chemical composition bases on Ni- 8Al-8Cr-1.5Mo-1Zr-O.OIB %wt. Because of high strength, good high temperature oxidation, carburization and creep resistance as mechanical and physical properties, IC221M has got good attention in aeronautical, military and steel production industries nowadays. The best service temperature range is 600-800°C and melting starts at II 70°C. Since 1993 according to broad range of researches and applications, ASTM standardized it at Al002-99 and from that time researchers try to replace steel with IC221M. %80 volume of microstructure in this alloy consisted of brittle y' and remain are y and low... 

    Theoretical and Experimental Investigations of Deformation Behavior from Stainless Steel 304L During Rolling at Evelated Temperatures

    , M.Sc. Thesis Sharif University of Technology Pourabdollah, Pegah (Author) ; Serajzadeh, Siamak (Supervisor)

    Preperation and Properties of Biodegradable Nanocomposites Packaging Films

    , M.Sc. Thesis Sharif University of Technology Pourkhanali Jirandehi, Khadijeh (Author) ; Alemzadeh, Iran (Supervisor) ; Vossoughi, Manoochehr (Supervisor)
    Abstract
    Increasing use of polymeric materials, especially in the packaging industry, besides the problems that exist in recycling these materials, has become a serious concern for the environment. The synthetic polymers are used widely in packaging industry so they have a considerable role in waste production in packaging industry. One way to solve this problem is adding a natural polymer to the synthetic polymer, as a result it becomes friendly environmentally. Starch is one of these natural polymers which is cheap and has the ability to complete degradation in the environment.using row starch in the polymeric compounds causes a severe drop in compound’s properties. For this reason, row starch must...