Loading...
Search for: mechanical-stress
0.008 seconds
Total 58 records

    Analysis of Contact Geometry Effect on the Slip Amplitude in Fretting Fatigue of a Turbine Blade Root

    , M.Sc. Thesis Sharif University of Technology Shirzadi, Saba (Author) ; Adibnazari, Saeed (Supervisor)
    Abstract
    Turbine blades are exposed to mechanical and thermal stresses due to their operation in critical conditions and get into various damages such as fatigue and wear. These factors reduce the life of the blades and lead to expensive maintenances. As a result, recognizing the type of possible damage helps to increase the life of the blade and to delay the occurrence of failures by taking the necessary actions.The subject of this thesis is to investigate the effect of geometric parameters on the slip amplitude in the root of a turbine blade. In this work, the effect of three parameters of contact area length, contact angle, and coefficient of friction on relative slip amplitude and contact... 

    Numerical Study on Stress Distribution of SolderJoints Based on Solder Microstructure

    , M.Sc. Thesis Sharif University of Technology Zarghami, Mohammad (Author) ; Nourani, Amir (Supervisor)
    Abstract
    In the past, lead-based solders with homogeneous and isotropic behavior were used in microelectronic packages. But today, due to the environmental concerns of lead, lead-free solders have been developed, which consist of a high weight percentage (more than 90%) of tin. Tin crystal shows significant anisotropic behavior, which leads to an anisotropic joint response in miniature solder joints with a small number of grains. In the first part of this research, using the crystal plasticity model, the anisotropic plastic response of tin grain was extracted from bulk solder stress-strain curve, then it was implemented in Abaqus software using built-in Hill's anisotropic plasticity model to consider... 

    Parametric Analysis of Thermomechanical Stresses in Functionally Graded Materials Under in-phase and out-of-phase Loading

    , M.Sc. Thesis Sharif University of Technology Torabi Aliabadi, Amin (Author) ; Abedian, Ali (Supervisor)
    Abstract
    Using Functionally Graded Materials (FGMs) in hot sections of aged aircrafts is one of the most important ways for life extending of Thermal Barrier Coatings (TBCs). Sudden variation of thermal stresses in interface of bond coat and ceramic coat layers could be changed to gradual variation with use of FGMs. The stress in FGMs has been the subject of several researches. Both macro and micromechanical modeling approaches have been used in these studies. In the macro mechanical approach, FGM is modeled as a multi-layer composite in which mechanical properties of each layer is found by averaging the properties and volume fraction of FGM constituents through the thickness of the layer. In this... 

    Trunk muscle fatigue and its implications in EMG-assisted biomechanical modeling

    , Article International Journal of Industrial Ergonomics ; Volume 43, Issue 5 , 2013 , Pages 425-429 ; 01698141 (ISSN) Haddad, O ; Mirka, G.A ; Sharif University of Technology
    2013
    Abstract
    Muscle fatigue affects the underlying EMG-force relationship on which EMG-assisted biomechanical models rely. The aim of this study was to evaluate the impact of short duration muscle fatigue on the muscle gain value. Participants performed controlled, isometric trunk extension exertions at 10, 20, and 30 degrees of trunk flexion and controlled isokinetic trunk extension exertions at 5 and 15°/sec on five separate days. Fatigue of the lumbar extensors was generated by moderate-intensity, trunk extension exertions. Participants performed controlled test contractions at defined intervals throughout the fatiguing bout and the EMG activities of trunk muscles were collected. These EMG data were... 

    Tool-tissue force estimation in laparoscopic surgery using geometric features

    , Article Studies in Health Technology and Informatics ; Volume 184 , 2013 , Pages 225-229 ; 09269630 (ISSN) Kohani, M ; Behzadipour, S ; Farahmand, F ; Sharif University of Technology
    IOS Press  2013
    Abstract
    This paper introduces three geometric features, from deformed shape of a soft tissue, which demonstrate good correlation with probing force and maximum local stress. Using FEM simulation, 2D and 3D model of an in vivo porcine liver was built for different probing tasks. Maximum deformation angle, maximum deformation depth and width of displacement constraint of the reconstructed shape of the deformed body were calculated. Two neural networks were trained from these features and the calculated interaction forces. The features are shown to have high potential to provide force estimation either for haptic devices or to assess the damage to the tissue in large deformations of up to 40%  

    Tissue growth into three-dimensional composite scaffolds with controlled micro-features and nanotopographical surfaces

    , Article Journal of Biomedical Materials Research - Part A ; Volume 101, Issue 10 , 2013 , Pages 2796-2807 ; 15493296 (ISSN) Tamjid, E ; Simchi, A ; Dunlop, J. W. C ; Fratzl, P ; Bagheri, R ; Vossoughi, M ; Sharif University of Technology
    2013
    Abstract
    Controlling topographic features at all length scales is of great importance for the interaction of cells with tissue regenerative materials. We utilized an indirect three-dimensional printing method to fabricate polymeric scaffolds with pre-defined and controlled external and internal architecture that had an interconnected structure with macro- (400-500 μm) and micro- (∼25 μm) porosity. Polycaprolactone (PCL) was used as model system to study the kinetics of tissue growth within porous scaffolds. The surface of the scaffolds was decorated with TiO2 and bioactive glass (BG) nanoparticles to the better match to nanoarchitecture of extracellular matrix (ECM). Micrometric BG particles were... 

    Thickness as an important parameter in designing vascular grafts

    , Article 2014 21st Iranian Conference on Biomedical Engineering, ICBME 2014 ; Nov , 2014 , p. 40-43 Mohseni, M ; Shamloo, A ; Samani, S. A ; Dodel, M ; Sharif University of Technology
    Abstract
    The main goal of this study is to investigate the role of vascular graft thickness in wall stress gradient in anastomosis region. Atherosclerosis is a common heart disease causes high mortality rates every year. The gold standard treatment of atherosclerosis is replacing with autologous vein extracted from patient's body. Since proper autologous vein is limited, researchers have made efforts to achieve compliance engineered blood vessels. Mechanical stress has great effect on both smooth muscle cells and endothelial cells and it is considered as a stimulus in plaque formation. In this study, we evaluate the role of thickness in wall stress of anastomosis region. For this purpose, two... 

    Thickness as an important parameter in designing vascular grafts

    , Article 2014 21st Iranian Conference on Biomedical Engineering, ICBME 2014, 26 November 2014 through 28 November 2014 ; November , 2014 , Pages 40-43 ; 9781479974177 (ISBN) Mohseni, M ; Shamloo, A ; Samani, S. A ; Dodel, M ; Sharif University of Technology
    Institute of Electrical and Electronics Engineers Inc  2014
    Abstract
    The main goal of this study is to investigate the role of vascular graft thickness in wall stress gradient in anastomosis region. Atherosclerosis is a common heart disease causes high mortality rates every year. The gold standard treatment of atherosclerosis is replacing with autologous vein extracted from patient's body. Since proper autologous vein is limited, researchers have made efforts to achieve compliance engineered blood vessels. Mechanical stress has great effect on both smooth muscle cells and endothelial cells and it is considered as a stimulus in plaque formation. In this study, we evaluate the role of thickness in wall stress of anastomosis region. For this purpose, two... 

    Thermo-mechanical stress analysis of thermal barrier coating system considering thickness and roughness effects

    , Article Surface and Coatings Technology ; Vol. 243 , 2014 , pp. 91-99 ; ISSN: 02578972 Moridi, A ; Azadi, M ; Farrahi, G. H ; Sharif University of Technology
    Abstract
    Cast aluminium-silicon alloy, A356.0, is widely used in automotive and aerospace industries because of its outstanding mechanical, physical, and casting properties. Thermal barrier coatings can be applied to combustion chamber to reduce fuel consumption and pollutions and also improve fatigue life of components. The purpose of the present work is to simulate stress distribution of A356.0 under thermo-mechanical cyclic loadings, using a two-layer elastic-visco-plastic model of ABAQUS. The results of stress-strain hysteresis loop are validated by an out of phase thermo-mechanical fatigue test. Different thicknesses from 300 to 800. μm of top coat and also roughness of the interfaces are... 

    The influence of grain size and grain size distribution on sliding frictional contact in laterally graded materials

    , Article Mechatronics and Applied Mechanics, Hong Kong, 27 December 2011 through 28 December 2011 ; Volume 157-158 , 2012 , Pages 964-969 ; 16609336 (ISSN); 9783037853801 (ISBN) Khajehtourian, R ; Adibnazari, S ; Tashi, S ; 2011 International Conference; on Mechatronics and Applied Mechanics, ICMAM2011 ; Sharif University of Technology
    2012
    Abstract
    The sliding frictional contact problem for a laterally graded half-plane has been considered. Two finite element (FE) models, in macro and micro scales have been developed to investigate the effective parameters in contact mechanics of laterally graded materials loaded by flat and triangular rigid stamps. In macro scale model, the laterally graded half-plane is discretized by piecewise homogeneous layers for which the material properties are specified at the centroids by Mori-Tanaka method. In micro scale model, functionally graded material (FGM) structure has been modeled as ideal solid quadrant particles which are spatially distributed in a homogeneous matrix. Boundary conditions and... 

    The effect of microthread design on magnitude and distribution of stresses in bone: a three-dimensional finite element analysis

    , Article Dental Research Journal ; Volume 15, Issue 5 , 2018 , Pages 347-353 ; 17353327 (ISSN) Golmohammadi, S ; Eskandari, A ; Movahhedy, M. R ; Shirmohammadi, A ; Amid, R ; Sharif University of Technology
    Abstract
    Background: The researches regarding the influence of microthread design variables on the stress distribution in bone and a biomechanically optimal design for implant neck are limited. The aim of the present study is to compare the effect of different microthread designs on crestal bone stress. Materials and Methods: Six implant models were constructed for three-dimensional finite element analysis including two thread profile (coarse and fine) with three different lengths of microthreaded neck (1 mm, 2 mm, and 3 mm). A load of 200 N was applied in two angulations (0° and 30°) relative to the long axis of the implant and the resultant maximum von Mises equivalent (EQV), compressive, tensile,... 

    Temperature and thickness effects on thermal and mechanical stresses of rotating FG-disks

    , Article Journal of Mechanical Science and Technology ; Volume 25, Issue 3 , 2011 , Pages 827-836 ; 1738494X (ISSN) Damircheli, M ; Azadi, M ; Sharif University of Technology
    Abstract
    In the present paper, radial and hoop thermal and mechanical stress analysis of a rotating disk made of functionally graded material (FGM) with variable thickness is carried out by using finite element method (FEM). To model the disk by FEM, one-dimensional two-degree elements with three nodes are used. It is assumed that the material properties, such as elastic modulus, Poisson's ratio and thermal expansion coefficient, are considered to vary using a power law function in the radial direction. The geometrical and boundary conditions are in the shape of two models including thermal stress (model-A) and mechanical stress (model-B). In model-A there exists no pressure in both external and... 

    Subject-specific regression equations to estimate lower spinal loads during symmetric and asymmetric static lifting

    , Article Journal of Biomechanics ; Volume 102 , 2020 Ghezelbash, F ; Shirazi Adl, A ; El Ouaaid, Z ; Plamondon, A ; Arjmand, N ; Sharif University of Technology
    Elsevier Ltd  2020
    Abstract
    Workplace safety assessment, personalized treatment design and back pain prevention programs require accurate subject-specific estimation of spinal loads. Since no noninvasive method can directly estimate spinal loads, easy-to-use regression equations that are constructed based on the results of complex musculoskeletal models appear as viable alternatives. Thus, we aim to develop subject-specific regression equations of L4-L5 and L5-S1 shear and compression forces during various symmetric/asymmetric tasks using a nonlinear personalized finite element musculoskeletal trunk model. Kinematics and electromyography (EMG) activities of 19 young healthy subjects were collected during 64 different... 

    Subject-specific 2D/3D image registration and kinematics-driven musculoskeletal model of the spine

    , Article Journal of Biomechanics ; Volume 57 , 2017 , Pages 18-26 ; 00219290 (ISSN) Eskandari, A. H ; Arjmand, N ; Shirazi Adl, A ; Farahmand, F ; Sharif University of Technology
    Abstract
    An essential input to the musculoskeletal (MS) trunk models that estimate muscle and spine forces is kinematics of the thorax, pelvis, and lumbar vertebrae. While thorax and pelvis kinematics are usually measured via skin motion capture devices (with inherent errors on the proper identification of the underlying bony landmarks and the relative skin-sensor-bone movements), those of the intervening lumbar vertebrae are commonly approximated at fixed proportions based on the thorax-pelvis kinematics. This study proposes an image-based kinematics measurement approach to drive subject-specific (musculature, geometry, mass, and center of masses) MS models. Kinematics of the thorax, pelvis, and... 

    Study of shape memory effect in NiMnGa Magnetic Shape Memory Alloy single crystals by incremental modeling

    , Article ASME 2010 10th Biennial Conference on Engineering Systems Design and Analysis, ESDA2010, 12 July 2010 through 14 July 2010 ; Volume 1 , 2010 , Pages 441-446 ; 9780791849156 (ISBN) Khajehsaeid, H ; Naghdabadi, R ; Sohrabpour, S ; Sharif University of Technology
    Abstract
    Magnetic Shape Memory Alloys (MSMAs) are a category of active materials which can be excited by magnetic field. These alloys have been used in sensor and actuator applications recently. MSMAs possess special properties such as large magnetic field-induced strains (up to %10) and high actuation frequency (about 1kHz), while ordinary shape memory alloys can't act in frequencies above 5Hz due to the time involved with heat transformation. In this paper, MSMAs are modeled by an incremental modeling approach which utilizes different secant moduli for different parts of stress-strain curve. Furthermore, stress-strain curve of MSMAs is approximated using an analytical expression. The incremental... 

    Stretching an anisotropic DNA

    , Article Journal of Chemical Physics ; Volume 128, Issue 12 , 2008 ; 00219606 (ISSN) Eslami Mossallam, B ; Ejtehadi, M. R ; Sharif University of Technology
    2008
    Abstract
    We present a perturbation theory to find the response of an anisotropic DNA to the external tension. It is shown that the anisotropy has a nonzero but small contribution to the force-extension curve of the DNA. Thus an anisotropic DNA behaves like an isotropic one with an effective bending constant equal to the harmonic average of its soft and hard bending constants. © 2008 American Institute of Physics  

    Stress analysis of three-unit all-ceramic dental bridges using FEM

    , Article 8th Biennial ASME Conference on Engineering Systems Design and Analysis, ESDA2006, Torino, 4 July 2006 through 7 July 2006 ; Volume 2006 , 2006 ; 0791837793 (ISBN); 9780791837795 (ISBN) Biria, M. J ; Farahmand, F ; Shamsaei, N ; Eslami, G. R ; Sharif University of Technology
    2006
    Abstract
    Mechanical fracture is a common cause of failure for 3-unit dental bridges, particularly, the all-ceramic structures. The purpose of the present study was to evaluate the effect of convergence angles of the abutments on the distribution of the mechanical stresses, within the prosthesis and at the restoration-abutments interface of a 3-unit all-ceramic bridge. The 3-D geometrical data of the second premolar and first and second molar teeth were obtained using ATOS scanner system and utilized for reconstruction of a surface model of the 3-unit bridge in I-Deas as solid modeler software. This was then transferred to MSC/Nastran software for mesh generation and finite element analysis. Two FE... 

    Search for critical loading condition of the spine-A meta analysis of a nonlinear viscoelastic finite element model

    , Article Computer Methods in Biomechanics and Biomedical Engineering ; Volume 8, Issue 5 , 2005 , Pages 323-330 ; 10255842 (ISSN) Wang, J. L ; Shirazi Adl, A ; Parnianpour, M ; Sharif University of Technology
    2005
    Abstract
    The relative vulnerability of spinal motion segments to different loading combinations remains unknown. The meta-analysis described here using the results of a validated L2-L3 nonlinear viscoelastic finite element model was designed to investigate the critical loading and its effect on the internal mechanics of the human lumbar spine. A Box-Behnken experimental design was used to design the magnitude of seven independent variables associated with loads, rotations and velocity of motion. Subsequently, an optimization method was used to find the primary and secondary variables that influence spine mechanical output related to facet forces, disc pressure, ligament forces, annulus matrix... 

    RETRACTED ARTICLE: Design, optimization and experimental evaluation of a novel tactile sensor for large surgical grasper

    , Article ICMEE 2010 - 2010 2nd International Conference on Mechanical and Electronics Engineering, Proceedings ; Volume 2 , 2010 , Pages V2111-V2116 ; 9781424474806 (ISBN) Shariatmadar Ahmadi, A. M ; Shamsollahi, M. J ; Mirbagheri, A ; Farahmand, F ; Sharif University of Technology
    IEEE Computer Society  2010
    Abstract
    There has been a rising trend towards robotic tele-surgery operations in recent years. A major concern, however, is the lack of direct contact between the surgeon and patient's body. Several researchers have proposed various designs of tactile sensors for surgical instruments to improve the dexterity of surgeons. Previously designed sensors, however, are mostly suitable for instruments with small contact areas. In this paper, a novel tactile sensor is introduced in integration with the teeth of a surgical grasper for large organs. It includes strain gauges embedded underneath a toothed plate, which also act as grasping teeth of the jaws of the instrument. The thickness of the plate and the... 

    Relief of edge effects in bi-adhesive composite joints

    , Article Composites Part B: Engineering ; Volume 108 , 2017 , Pages 153-163 ; 13598368 (ISSN) Yousefsani, S. A ; Tahani, M ; Sharif University of Technology
    Elsevier Ltd  2017
    Abstract
    Three-dimensional thermo-mechanical stress analysis of composite joints with bi-adhesive bonding is presented using the full layerwise theory. Based on three-dimensional elasticity theory, sets of fully coupled governing differential equations are derived using the principle of minimum total potential energy and are simultaneously solved using the state space approach. Results show that bi-adhesive bonding substantially relieves the edge effects. Moreover, series of parametric studies reveal the nonlinear effects of bonding length ratio and the relative stiffness and coefficient of thermal expansion of the mid- and side-adhesives. It is also concluded that the optimum design of a bi-adhesive...