Loading...
Search for: mechanical-tests
0.007 seconds
Total 36 records

    Characterization of reinforcing effect of alumina nanoparticles on the novolac phenolic resin

    , Article Polymer Composites ; Vol. 35, Issue 7 , July , 2014 , pp. 1285-1293 ; ISSN: 02728397 Etemadi, H ; Shojaei, A ; Sharif University of Technology
    Abstract
    Very fine alumina nanoparticles were loaded in novolac type phenolic resin (PF) using solution mixing method. The concentration of nanoalumina in PF was varied between 2.5 to 20 wt%. All the compounds were compression molded and then subjected to scanning electron microscopy (SEM), tensile, flexural, and dynamic mechanical analysis (DMA) tests. SEM analysis showed that the nanoalumina were dispersed uniformly at low concentrations, however, at high concentrations, dispersion was suppressed leading to agglomerates in the composites. Mechanical testing revealed that the nanoalumina had a great influence on the strength and stiffness of PF resin particularly at concentrations below 5 wt%.... 

    Analysis of strain rate sensitivity of ultrafine-grained AA1050 by stress relaxation test

    , Article Metallurgical and Materials Transactions A: Physical Metallurgy and Materials Science ; Volume 45, Issue 12 , November 2014 , Pages 5442-5450 Mohebbi, M. S ; Akbarzadeh, A ; Kim, B. H ; Kim, S. K ; Sharif University of Technology
    Abstract
    Commercially pure aluminum sheets, AA 1050, are processed by accumulative roll bonding (ARB) up to eight cycles to achieve ultrafine-grained (UFG) aluminum as primary material for mechanical testing. Optical microscopy and electron backscattering diffraction analysis are used for microstructural analysis of the processed sheets. Strain rate sensitivity (m-value) of the specimens is measured over a wide range of strain rates by stress relaxation test under plane strain compression. It is shown that the flow stress activation volume is reduced by decrease of the grain size. This reduction which follows a linear relation for UFG specimens, is thought to enhance the required effective (or... 

    Effect of nanoclays on the mechanical properties and durability of novolac phenolic resin/woven glass fiber composite at various chemical environments

    , Article Composites Part A: Applied Science and Manufacturing ; Vol. 63 , 2014 , pp. 149-158 ; ISSN: 1359835X Eesaee, M ; Shojaei, A ; Sharif University of Technology
    Abstract
    Both natural montmorilonite (CN) and organically modified montmorilonite (CB) improved significantly the mechanical performance of novolac phenolic resin (PF)/woven glass-fiber (GF) composites due to their nanodispersion and good interfacial interaction with the matrix. It was revealed that the incorporation of 2.5 wt% of the clays enhances the elastic modulus up to 38% for CN and 43% for CB. Aging of PF/GF composites at various aqueous solutions, i.e. water, brine and acidic environments, increased stiffness of the composite (∼100-250% increase in elastic modulus) due to possible secondary crosslinking caused by water molecules and hydroxyl groups of PF resin. However, aging led to the... 

    Test data compression strategy while using hybrid-BIST methodology

    , Article Proceedings of IEEE East-West Design and Test Symposium, EWDTS 2013, Rostov-on-Don ; Sept , 2013 ; 9781479920969 (ISBN) Karimi, E ; Tabandeh, M ; Haghbayan, M. H ; Sharif University of Technology
    2013
    Abstract
    In this paper a strategy is proposed for compressing the test data while using concurrent hybrid-BIST methodologyfor testing SoCs. In the proposed method, in addition tousing BIST strategy for testing cores with deterministic sequential test patterns in an SoC( Without using scan chains), (ATE) is used for testing cores with deterministic test patterns through Test Access Mechanism (TAM) or functional bus. As will be shown in experimental results, this process compresses hybrid-BIST overall test patterns considerably that affects the overall Test Application Time (TAT) in comparison with pure deterministic, pure pseudo random, and combination of deterministic and pseudo random test patterns  

    Effect of molybdenum on grain boundary segregation in Incoloy 901 superalloy

    , Article Materials and Design ; Volume 46 , 2013 , Pages 573-578 ; 02641275 (ISSN) Tavakkoli, M. M ; Abbasi, S. M ; Sharif University of Technology
    2013
    Abstract
    In this paper, the effect of molybdenum on the grain boundary segregation of other elements was studied in Incoloy 901 superalloy. Initially, five alloys were prepared with different percentages of Mo by using a vacuum induction furnace. Then, these alloys were remelted by Electro-slag remelting (ESR) process and after homogenizing at 1160 °C for 2. h followed by air cooling, were rolled. The effect of Mo on segregation of elements was evaluated with Scanning Electron Microscopy, Linear Analysis, and the mechanical tests. The results showed that the grain boundary segregations of elements in Incoloy 901 superalloy were decreased by increasing of molybdenum content up to 6.7% and the... 

    Experimental and numerical investigation of pulse-shaped split Hopkinson pressure bar test

    , Article Materials Science and Engineering A ; Volume 539 , 2012 , Pages 285-293 ; 09215093 (ISSN) Naghdabadi, R ; Ashrafi, M. J ; Arghavani, J ; Sharif University of Technology
    Abstract
    Employing a proper pulse shaper in the conventional split Hopkinson pressure bar (SHPB) test helps to achieve dynamic equilibrium condition and to fulfill a constant strain rate condition in the test specimen. To this end, the parameters affecting the incident pulse shape, i.e., pulse shaper thickness, pulse shaper diameter, striker bar length and striker bar velocity are experimentally studied. Moreover, simulation results, validated by experimental data together with wave propagation analysis, are exploited to provide general guidelines to properly design a pulse shaper. It is recommended to use a relatively large diameter pulse shaper for testing work-hardening materials. Also, for... 

    Electrodeposition and characterization of Ni-Co/SiC nanocomposite coatings

    , Article Journal of Alloys and Compounds ; Volume 509, Issue 39 , 2011 , Pages 9406-9412 ; 09258388 (ISSN) Bahadormanesh, B ; Dolati, A ; Ahmadi, M. R ; Sharif University of Technology
    2011
    Abstract
    Ni-Co/SiC nanocomposite coatings were electrodeposited in a modified watt type of Ni-Co bath containing 20 nm SiC particles to be codeposited. Potentiodynamic polarization tests were conducted to study the effect of the SiC particulates on the electrodeposition of Ni and Co. Scanning electron microscopy was used to assess the morphology of the Ni-Co alloy and Ni-Co/SiC nanocomposite coatings. The distribution of the particulates in the matrix was considered by means of transmission electron microscopy. Applying nanomechanical testing instruments coupled to atomic force microscopy, mechanical properties of the alloy and composite coatings were studied and compared. The presence of 11 vol.%... 

    Investigation into characteristics of Portevin-Le Chatelier effect of an Al-Mg Alloy

    , Article Journal of Materials Engineering and Performance ; Volume 19, Issue 9 , 2010 , Pages 1264-1267 ; 10599495 (ISSN) Sheikh, H ; Sharif University of Technology
    Abstract
    In this study, the plastic instabilities associated with the Portevin-Le Chatelier (PLC) and their effects on the mechanical properties and the fracture surfaces have been investigated for AA 5083. Tensile tests were performed at various temperatures and strain rates in order to do so. Then, serrated and smooth yielding domains were determined in Ln ε̇-1/T diagram. The stress-strain curves related to the serrated domain show the values of flow stress decreases by increasing the strain rate at a constant temperature. In addition, the plot of critical strain versus imposed strain rate indicates an inverse manner at very low strain rates. It is confirmed that the type of PLC bands alters the... 

    On the formation of intermetallics during the furnace brazing of pure titanium to 304 stainless steel using Ag (30-50%)-Cu filler metals

    , Article Materials and Manufacturing Processes ; Volume 25, Issue 11 , 2010 , Pages 1333-1340 ; 10426914 (ISSN) Shafiei, A ; Abachi, P ; Dehghani, K ; Pourazarang, K ; Sharif University of Technology
    2010
    Abstract
    In the present work, the effect of brazing pa rameters on the properties of the brazed joint of pure titanium and 304 stainless steel (304SS) was investigated. Three different Ag-Cu filler metals were used, while the temperature and time of brazing were in the range of 800-950°C and 5-45 minutes, respectively. The microstructural observations show that, depending on the brazing conditions, different intermetallic phases such as CuTi2, CuTi, Cu3Ti4, and FeTi were formed at the phases interface. Based on the microstructural observations, a model was developed to characterize the formation of phases at the interfaces and brazed joint. The results show that, while some phases may form during the... 

    Production of granulated-copper oxide nanoparticles for catalytic application

    , Article Journal of Materials Research ; Volume 25, Issue 10 , 2010 , Pages 2025-2034 ; 08842914 (ISSN) Hosseinpour, M ; Ahmadi, S. J ; Mousavand, T ; Outokesh, M ; Sharif University of Technology
    2010
    Abstract
    Ultra fine CuO nanoparticles In the range of 2 ± 0.2 nm were synthesized by the supercritical hiydrotliermal method in a batch reactor. Itwas demonstrated that elevating the pH of the Cu2+ precursor solution to around 6 (neutral condition) not only does not lead to excessive agglomeration of the particles, but also reduces particle size and in general promotes their nanoscale characteristics. Prepared nanoparticles were immobilized in the biopolymcric matrix of barium alginate and calcined at different temperatures resulting in micro spherical granules of high porosity and elevated mechanical strength. The fabricated samples were characterized using x-ray diffractometry (XRD), transmission... 

    Effect of rolling speed on the occurrence of strain aging during and after warm rolling of a low-carbon steel

    , Article Journal of Materials Science ; Volume 45, Issue 13 , July , 2010 , Pages 3405-3412 ; 00222461 (ISSN) Koohbor, B ; Ohadi, D ; Serajzadeh, S ; Akhgar, J. M ; Sharif University of Technology
    2010
    Abstract
    In this study, effect of rolling speed on strain aging phenomena in warm rolling of a carbon steel has been investigated. For this purpose, by using a mathematical model and predicting temperature and strain rate fields, the possibility of occurrence of dynamic strain aging during the warm rolling was first evaluated. In the next stage, warm-rolled samples were aged up to 11 months at room temperature for studying the kinetics of static strain aging, while mechanical tests as well as microstructural evolutions have been performed to determine the effect of strain aging on material behavior. The results indicate that dynamic strain aging may not occur for the employed rolling program;... 

    Physico-mechanical properties and thermal stability of thermoset nanocomposites based on styrene-butadiene rubber/phenolic resin blend

    , Article Materials Science and Engineering A ; Volume 527, Issue 4-5 , 2010 , Pages 917-926 ; 09215093 (ISSN) Shojaei, A ; Faghihi, M ; Sharif University of Technology
    Abstract
    Effect of organoclay (OC) on the performance of styrene-butadiene rubber (SBR)/phenolic resin (PH) blend prepared by two-roll mill was investigated. The influence of OC content ranging between 2.5 and 30 phr on the performance of SBR/PH was investigated using X-ray diffraction (XRD), scanning electron microscopy (SEM), interfacial energy analysis, tensile, dynamic mechanical, swelling, cure rheometry and thermogravimetric analysis (TGA). It was found that the OC is mainly localized in the SBR phase of SBR/PH blend through the kinetically favored mechanism relevant to rubber chains. The results also demonstrated the positive role of PH on the dispersion of OC. Both PH and OC showed... 

    Co-sintering of M2/17-4PH powders for fabrication of functional graded composite layers

    , Article Journal of Composite Materials ; Volume 44, Issue 4 , 2010 , Pages 417-435 ; 00219983 (ISSN) Firouzdor, V ; Simchi, A ; Sharif University of Technology
    2010
    Abstract
    Stepwise-graded composite layer of M2 tool stel and 17-4PH stainless steel was fabricated by a simple powder layering technique and the isothermal and nonisothermal sintering response of the bilayer were examined. It was shown that the materials exhibit poor compatibility during co-sintering, i.e., the amount of mismatch shrinkage is significant. An improved compatibility was obtained by adding 0.2 wt% B to the stainless steel powder. Formation of relatively dense layer at the bonding zone indicated an enhanced densification rate at the interface. Microstructural studies showed formation of a ferritic interface in M2/17-4PH composite and elongated grains with an intergranular boride phase... 

    The effect of mechanical and thermal properties of FRP bars on their tensile performance under elevated temperatures

    , Article Construction and Building Materials ; Volume 157 , 2017 , Pages 1001-1010 ; 09500618 (ISSN) Ashrafi, H ; Bazli, M ; Najafabadi, E. P ; Vatani Oskouei, A ; Sharif University of Technology
    Abstract
    In this experimental study the effect of physical and thermal properties of various FRP bars on their performance under elevated temperatures are investigated. The parameters included the bars' diameter, type of fiber, type of resin, fiber to matrix ratio, and thermal properties were studied. Moreover, ANOVA (ANalysis Of VAriance) was performed in order to investigate the contribution of each variable on the obtained results. The results showed that in addition to the temperature, the bars' diameter, type of fiber, type of resin, and thermal properties (Tg and Td) of the FRP bars have contributions to the results, while the fiber to matrix ratio was found to be an ineffective factor. It was... 

    Nanostructure and mechanical properties of 0-7 strained aluminum by CGP: XRD, TEM and tensile test

    , Article Materials Science and Engineering A ; Volume 526, Issue 1-2 , 2009 , Pages 219-224 ; 09215093 (ISSN) Hosseini, E ; Kazeminezhad, M ; Sharif University of Technology
    2009
    Abstract
    Commercial purity aluminum sheets are subjected to a severe plastic deformation technique called constrained groove pressing. In this study for the first time by using some technical optimizations, a strain magnitude of 6.9 is imposed to the sheets. The grain size evolution during severe plastic deformation is studied using Williamson-Hall analysis on X-ray diffraction pattern of the deformed samples. These results and transmission electron microscopy observations show that constrained groove pressing process can effectively refine the coarse-grained structure to an ultrafine grain range. The results of mechanical tests show that imposing strain in range of 0-5.75 causes to strengthening of... 

    An investigation into the effect of strain ageing on mechanical properties of low-carbon steels after warm rolling

    , Article International Journal of Advanced Manufacturing Technology ; Volume 40, Issue 7-8 , 2009 , Pages 721-728 ; 02683768 (ISSN) Serajzadeh, S ; Sharif University of Technology
    2009
    Abstract
    In this study, the effect of strain ageing on mechanical properties of warm-rolled steel is investigated. Warm-rolling experiments together with mechanical testing are employed to investigate the effect of processing parameters on the ageing kinetics during and after warm rolling of a low-carbon steel. To do so, the occurrence of dynamic strain ageing is first determined by means of a two-dimensional thermo-mechanical model and then the effect of this phenomenon on the subsequent static strain ageing after warm rolling is studied employing mechanical testing. The results show that the occurrence of dynamic strain ageing during warm rolling may effectively alter the progress of the subsequent... 

    Comparison of mechanical properties of martensite/ferrite and bainite/ferrite dual phase 4340 steels

    , Article Materials Science and Engineering A ; Volume 523, Issue 1-2 , 2009 , Pages 125-129 ; 09215093 (ISSN) Saeidi, N ; Ekrami, A ; Sharif University of Technology
    2009
    Abstract
    Different microstructures were produced by heat treatment of 4340 steel. These microstructures are bainite, martensite, ferrite-martensite and ferrite-bainite. Mechanical tests were carried out at room temperature. The results showed that steel with bainite-ferrite microstructure has better ductility and charpy impact energy than steels with martensite-ferrite and full bainite microstructures. But yield and tensile strengths of this steel are less than the yield and tensile strengths of the other two steels. Hardness measurements showed that their hardness is the same. Fracture surface observations of tensile specimens showed increase in toughness of bainite-ferrite in comparison to... 

    Properties of alumina nanoparticle-filled nitrile-butadiene-rubber/ phenolic-resin blend prepared by melt mixing

    , Article Polymer Composites ; Volume 30, Issue 9 , 2009 , Pages 1290-1298 ; 02728397 (ISSN) Faghihi, M ; Shojaei, A ; Sharif University of Technology
    2009
    Abstract
    Effect of alumina nanoparticle (ANP) on the properties of rubber compounds based on nitrile-butadiene-rub- ber (NBR) and NBR/phenolic-resin (PH) blend is examined. To investigate the surface characteristics of the nanoparticles on the performance of nanoalumina- filled compounds, trimethoxyvinylsilane (MVS) is attached chemically on the surface of ANP through an appropriate functionalization process. Various NBR and NBR/Ph compounds filled with ANP and functionalized ANP (f-ANP) are prepared via melt mixing using traditional open two-roll mill. Microscopic analysis carried out by scanning electron microscopy (SEM) and transmission electron microscopy (TEM) reveals good dispersion of... 

    Failure analysis of holding U-bolts of an automobile wheels

    , Article Engineering Failure Analysis ; Volume 16, Issue 5 , 2009 , Pages 1442-1447 ; 13506307 (ISSN) Behjati, P ; Etemadi, A. R ; Edris, H ; Sharif University of Technology
    2009
    Abstract
    Holding U-bolts of an automobile wheels are manufactured from 10B21 boron steel rods. Changing the source of the rods from X to Y, with an identical manufacturing procedure, it was observed that parts fracture at the mechanical straightening stage (final stage of the manufacturing line). In this case study, microscopy techniques and mechanical tests were used to identify the cause of this failure. It was shown that higher contents of carbon and boron of the source Y rods promotes precipitation of boron containing carbides along the grain boundaries. These precipitates act as crack nucleation sites and are responsible for the fracture of the parts under the straightening stage stresses. Based... 

    The effect of gypsum cementation on the mechanical behavior of gravely sands

    , Article Geotechnical Testing Journal ; Volume 28, Issue 4 , 2005 , Pages 380-390 ; 01496115 (ISSN) Haeri, S. M ; Hamidi, A ; Tabatabaee, N ; Sharif University of Technology
    2005
    Abstract
    The behavior of a cemented gravely sand is studied using triaxial tests. Drained and undrained tests were performed on dry and saturated specimens, and stress-strain characteristics of the soil, along with volumetric and pore pressure changes, were identified. The gypsum plaster was used as the cement agent and was mixed with the soil in different percentages. The tests were done in the usual range of confining pressures, from 25 to 500 kPa. Test results show that dilation occurs even at the highest confining stress and the least cement content. The behavior of the cemented soil is found to be more brittle in drained condition than the undrained one. However, the brittleness of soil...