Loading...
Search for: mechanism
0.021 seconds
Total 3900 records

    “It from Bit” and Quantum Mechanics

    , Article Foundations of Science ; 2019 ; 12331821 (ISSN) Barzegar, A ; Shafiee, A ; Taqavi, M ; Sharif University of Technology
    Springer  2019
    Abstract
    John Archibald Wheeler is one of the staunchest advocates of the idea that information is more fundamental than anything else in physics. In this paper, we examine the status of this idea summarized in Wheeler’s slogan ‘it from bit’ in the context of Bohmian Mechanics and spontaneous collapse models. We will argue that any question about the status of ‘it from bit’ crucially depends on the particular interpretation of these theories one favors. © 2019, Springer Nature B.V  

    “It from Bit” and Quantum Mechanics

    , Article Foundations of Science ; 2019 ; 12331821 (ISSN) Barzegar, A ; Shafiee, A ; Taqavi, M ; Sharif University of Technology
    Springer  2019
    Abstract
    John Archibald Wheeler is one of the staunchest advocates of the idea that information is more fundamental than anything else in physics. In this paper, we examine the status of this idea summarized in Wheeler’s slogan ‘it from bit’ in the context of Bohmian Mechanics and spontaneous collapse models. We will argue that any question about the status of ‘it from bit’ crucially depends on the particular interpretation of these theories one favors. © 2019, Springer Nature B.V  

    “It from Bit” and quantum mechanics

    , Article Foundations of Science ; Volume 25, Issue 2 , 2020 , Pages 375-384 Barzegar, A ; Shafiee, A ; Taqavi, M ; Sharif University of Technology
    Springer  2020
    Abstract
    John Archibald Wheeler is one of the staunchest advocates of the idea that information is more fundamental than anything else in physics. In this paper, we examine the status of this idea summarized in Wheeler’s slogan ‘it from bit’ in the context of Bohmian Mechanics and spontaneous collapse models. We will argue that any question about the status of ‘it from bit’ crucially depends on the particular interpretation of these theories one favors. © 2019, Springer Nature B.V  

    A Lightweight Lattice-Based Searchable Encryption Scheme

    , M.Sc. Thesis Sharif University of Technology Karimi, Mohammad Hossein (Author) ; Eghlidos, Taraneh (Supervisor)
    Abstract
    Many lattice-based public key encryption schemes are forced to use long keys. To deal with this problem, structured lattices such as NTRU can be used. Lattice-based searchable public key encryption schemes are no exception. Furthermore, in most existing searchable public key encryption schemes, it is assumed that the user searches documents with only one keyword. However, using a conjunctive keyword search, we can search for documents containing several keywords by executing the trapdoor generation algorithm only once. On the other hand, in most of the published searchable public key encryption schemes, storing and searching encrypted keywords are responsibility of a central entity called... 

    An Automated Investigative System of a Plough Movement by Using a Developed Displacement Sensor

    , M.Sc. Thesis Sharif University of Technology Abdul Hussein Al khayyat, Ahmad Abbas (Author) ; Selk Ghafari, Ali (Supervisor)
    Abstract
    It is so essential to study a safe dynamics of agricultural mechanical equipment during duty stroke, plus getting a rich information about the nature of the soil under processing and in many cases there are associated simultaneous problems, so the main aim of this study is to create a safe working conditions for such specific equipment to extend their life time span as possible as it could. This study will predict an un-usual working circumstances for agricultural tools including plough of course depending on some automated technologies with fast response supported by smooth working conditions. Simply, the proposed Investigative system consists of a linear potentiometric element with... 

    A Persian Dialog System with Sequence to Sequence Learning

    , M.Sc. Thesis Sharif University of Technology Ghafourian, Mohammad (Author) ; Sameti, Hossein (Supervisor)
    Abstract
    Conversation modeling is one of the most important goals in the field of understanding natural language and machine intelligence. Recently, with the enormous growth of the Internet and social networks, the amount of available data on the Web has increased significantly.This makes it possible to use data-driven approaches to solve the modeling problem of conversation.One of the most recent data-driven methods is the sequence to sequence modeling. In this document, after providing the necessary prerequisites, we examined the various models that have used the sequence to sequence approach for conversation modeling. We further examined the ways of improving the efficiency of this modeling... 

    A Coupling Atomistic-continuum Approach for Modeling Dislocation in Plastic Behavior of Nano-structures

    , M.Sc. Thesis Sharif University of Technology Omrani Pournava, Amir Mohsen (Author) ; Khoei, Amir Reza (Supervisor) ; Jahanshahi, Mohsan (Co-Advisor)
    Abstract
    In this study, a novel multi-scale hierarchical method has been employed to explore the role of edge dislocation on Nano-plates with hexagonal atomic structure in large deformation. multiscale hierarchical atomistic/molecular dynamics (MD) finite element (FE) coupling methods are proposed to demonstrate the impact of dislocation on mechanical properties of Magnesium in large deformation. The atomic nonlinear elastic parameters are attained via computing first-order derivation of stress with respect to strain of Representative Volume Element (RVE). To associate between atomistic and continuum level, the mechanical characteristics are captured in the atomistic scale and transferred to the... 

    Learning Molecular Properties Using Deep Learning

    , M.Sc. Thesis Sharif University of Technology Moradi, Parsa (Author) ; Hossein Khalaj, Babak (Supervisor)
    Abstract
    Design and production of a drug is a very time and money consuming process. It takes more than a decade and about 2.5 million dollars on various stages to design a drug. Attempts to reduce this cost and time to market will make drugs available to customers at a more reasonable time. Some stages such as animal testing phase and clinical trials, can not be replaced and must take place in practice. Fortunately, some laboratory steps are interchangeable with software algorithms. These algorithms can significantly reduce the cost and time to market of the drug if they are accurate enough. On the other hand, the remarkable results of machine learning, in particular, Deep Neural Networks, in areas... 

    Representation Learning for Heterogeneous Information Networks

    , M.Sc. Thesis Sharif University of Technology Mirzaie, Mohammad Ali (Author) ; Beigy, Hamid (Supervisor)
    Abstract
    Around world and the networks within it can be modeled in various templates. Graph structure is one of those templates in which objects and relations may have more than one types. We call this phenomenon "heterogeneity".Heterogeneity makes the networks hard to model and that is why the proposed methods for modeling the networks assumed the network structures homogeneous. This assumption may cause data loss due to ignoring the variety of types in network objects and relations and this loss can lessen the accuracy of data mining tasks.To tackle the challenge of data loss in the mentioned assumption, learning representations for heterogeneous information networks (HINs) was introduced. HINs... 

    Dynamic Buckling of Laminated Composite Beams Resting on Elastic Foundation under Thermal and Mechanical Load

    , M.Sc. Thesis Sharif University of Technology Eshrati, Mojtaba (Author) ; Kouchakzadeh, Mohammad Ali (Supervisor)
    Abstract
    In this study, static and dynamic buckling of laminated composite beams resting on an elastic foundation under thermal and mechanical load is studied. Beam is resting on an elastic foundation with hardening/softening term. Nonlinear governing equations are obtained based on the energy method and are solved via the multi-term Galerkin method and the Newton-Raphson numerical method. Critical dynamic load is estimated by the Hoff Simitses criterion. The results are validated with the results of available articles in this field. In the following, the effects of different parameters of the problem on the results are examined. Results reveal that for a sufficiently stiff softening elastic... 

    Linear Hardening in FCC Alloys

    , Ph.D. Dissertation Sharif University of Technology Hamdi, Farzad (Author) ; Asgari, Sirous (Supervisor)
    Abstract
    Previous observation and models on the origin of linear hardening behavior in FCC polycrystals are critically reviewed. To reveal the draw backs of the previous models, selected results of an investigation on the evolution of microstructure during simple compression testing of two FCC polycrystals, Inconel 625 superalloy and AISI 316L stainless steel are reported. It is found that while a number of FCC polycrystals show linear hardening behavior, the evolution of the underlying microstructure may be quite different. It is argued that, in contrast to the current belief, deformation twinning may not be the sole cause of linear hardening in low SFE FCC polycrystals. It is suggested that only... 

    Application of Isogeometric Analysis in Determining Stress Distribution at the Tip of a Crack

    , M.Sc. Thesis Sharif University of Technology Zandinia, Meysam (Author) ; Jahanshahi, Mohsen (Supervisor)
    Abstract
    Isogeometric Analysis is one of the new methods for solving partial differential Equations which has special advantages compared to conventional methods such as the finite Element method. Some of these benefits can be used to approximate the geometry and solving the Equations governing the behavior of materials. Calculating the stress intensity factor at the tip of the Crack using classical method such as finite element method is done as well as IGA and gives Acceptable Results in linear range. Studying how to calculate these coefficients in combination with Isogeometric analysis method and comparing results with FEM due to novelty of the approach can have considerable importance for... 

    Three Dimentional Printing of Highly Porous Metamaterials Based on Polyurethane/Tricalcium Phosphate Composite for Tissue Engineering

    , M.Sc. Thesis Sharif University of Technology Hosseini, Danial (Author) ; Simchi, AbdolReza (Supervisor) ; Tavakoli, Rouhollah (Supervisor)
    Abstract
    In the last decade, mechanical metamaterials have attracted more attention due to new design principles that combine the concept of hierarchical architecture with material size effects at the micro or nano scale. This strategy shows extraordinary mechanical performance that we use in unknown parts of the material property space, including strength-to-density ratios, extraordinary flexibility, and the ability to absorb energy with brittle components. The aim of this research was to print metamaterial scaffolds from a combination of biocompatible and bioactive to be used as scaffolds in bone tissue engineering. In addition to the biological properties appropriate to the host tissue, the... 

    3D Bioprinting of Amniotic Membrane-Based Nanocomposite for Tissue Engineering Applications: Evaluation of Rheological, Mechanical and Biological Properties

    , Ph.D. Dissertation Sharif University of Technology Kafili, Golara (Author) ; Simchi, Abdolreza (Supervisor) ; Tamjid, Elnaz (Supervisor) ; Niknejad, Hassan (Co-Supervisor)
    Abstract
    3D bioprinting is an additive manufacturing method that facilitates the deposition of the desired cells and biomaterials at any pre-defined location. This technique also enables control over the internal structure and external dimensions of printed constructs. Among various biomaterials used as bioinks, the bioinks derived from decellularized extracellular matrixes (dECMs) have attracted significant attention due to their bioactivity and being a rich source of biochemical cues. Here in this study, the decellularized amnion membrane (dAM) has been selected as the main component of the bioink formulation because of its biocompatibility, low immunogenicity, antibacterial property, abundance,... 

    Chatter Phenomena Prediction in Two-dimensional Milling Process from Chip Formation by Using Finite Element Method

    , M.Sc. Thesis Sharif University of Technology Tavassoli, Meysam (Author) ; Movahhedy, Mohammad Reza (Supervisor)
    Abstract
    Chattering in cutting process is one of the destructive phenomena in machining, which results in ripple of workpiece surfaces. In this phenomenon, the displacement of the tool tip moves towards instability and the tool vibration continues. Eventually, the tool jumps or breaks out with relatively large shear forces, which leads to a reduction in the rate of production and machining. Since machining processes are very widespread, phenomenological studies of chatter have progressed in the field of modeling and empirical experiments. Research in the field of modeling is mainly intended to examine the dynamics of the tool in two ways: analytic and finite element. In these methods, there are... 

    Prediction of Temperature and Velocity Fields in Friction Stir Welding of 7xxx AA

    , M.Sc. Thesis Sharif University of Technology Rezaei Farkoosh, Amir (Author) ; Serajzadeh, Siamak (Supervisor)
    Abstract
    In this work a mathematical model has been developed to predict large deformation of work piece in friction stir welding process. Commercially finite element package; ABAQUS is used to solve the governing equations while an elasto-viscoplastic materials behavior is utilized in the model. The model is capable of considering the effects of process parameters such as welding speed and tool geometry on various aspects of the process including temperature and stress distribution within the work piece as well as tool, and velocity and strain fields with in the work piece. Experimental works have been carried out to assess the accuracy of the model and also to determine the effects of various... 

    Prediction of Gas Phase NMR Chemical Shifts Using Gas Phase NMR and Quantum Calculations in Optimally Selected Level of Theory by Factorial Design

    , Ph.D. Dissertation Sharif University of Technology Shaghaghi, Hoora (Author) ; Tafazzoli, Mohsen (Supervisor) ; Jalali Heravi, Mehdi (Supervisor)
    Abstract
    The optimum wave functions and calculation method were obtained using a 24 factorial design. Based on preliminary experiences, the following four factors at two level was selected: electron correlation, triple-ξ valence shell, diffuse function and polarization function.
    The wave functions for calculating gas phase 1H chemical shifts of primary and secondary alcohols were optimized using factorial design as multivariate technique. Gas-phase experimental 1H chemical shifts of 18 alcohols were used to establish the best levels of theory for obtaining 1H chemical shift, among them the new experimental values of 1H chemical shifts of 10 alcohols were obtained in our laboratory. HF/6-31G(d,p)... 

    Prediction of Strain, Stress, and Microstructure in Sever Plastic Deformation of Equal Channel Angular Extrusion

    , Ph.D. Dissertation Sharif University of Technology Narooei, Keivan (Author) ; Karimi Taheri, Ali (Supervisor)
    Abstract
    Sever plastic deformation can be used for decreasing the grain size and increasing the mechanical properties. In this method a square or circular cross section specimen is passed from two intersecting channel with equal cross section. Thereby, a large plastic strain without change of cross section is produced in the specimen. This large strain is the main reason for the interest of researchers in many fields. In the experimental research fields, researchers can study the response of material in the large plastic strain range, investigation of stage III of hardening and after it, change of microstructure to submicron and Nano, and increase of strength simultaneously with preserving of... 

    Prediction of Temperature and Strain Distribution in the Warm Rolling of Austenite Stainless Steel

    , M.Sc. Thesis Sharif University of Technology Nemati, Elham (Author) ; Serajzadeh, Siamak (Supervisor)
    Abstract
    In this research, the hot and warm rolling of stainless steel 304 was studied. First the rolling process was simulated using Finite Element Method software ABAQUS and the distribution of temperature and strain in the process under discontinuous conditions were predicted. Next, hot and warm rolling of stainless steel 304 under different conditions was carried out. Specimens were cut and subject to mechanical testing, metallography and electron microscopic studies. Data obtained from these experiments and the predicted trends from ABAQUS were compared, therefore studying the effect of different parameters on the microstructure and mechanical properties of the rolled specimen. Results indicate... 

    Emergence of the Electroweak Vacuum via Quantum Corrections

    , M.Sc. Thesis Sharif University of Technology Sadeghi, Ahmad (Author) ; Torabian, Mahdi (Supervisor) ; Arfaei, Hesamaddin (Co-Advisor)