Loading...
Search for:
metabolism
0.012 seconds
Total 176 records
Hyperbolic and Metabolic Forms and Involutions
, Ph.D. Dissertation Sharif University of Technology ; Gholamzadeh Mahmoudi, Mohammad (Supervisor) ; Mahdavi-Hezavehi, Mohammad (Supervisor)
Abstract
In this thesis, we investigate the involutions of a Clifford algebra induced by involutions of orthogonal group in characteristic two. Several properties of these involutions, such as the relations between their invariants and their decompositions are studied. Also it is shown that a tensor product of quaternion algebras with involution can be expressed as the Clifford algebra of a suitable quadratic form with an involution induced by an involution of orthogonal group. Finally, in connection with the Pfister factor conjecture formulated by D. B. Shapiro, split tensor products of quaternion algebras with involution over a field of characteristic two are investigated
Numerical Simulation of Glucose Metabolism and Hepatocyte Viability within a Microfluidic
, M.Sc. Thesis Sharif University of Technology ; Firoozabadi, Bahar (Supervisor)
Abstract
The advent of microfluidics as suitable environments for culturing cells is associated with some challenges such as shear stresses applied on the cells. In fact, hepatocytes lose their function as exposed to high shear stresses similar to other cell types. Moreover, among all factors needed for cell viability, feeding hepatocytes with adequate oxygen is of great importance due to their high demand for oxygen compared the other cells. In this thesis, different types of cultures including 2D and 3D has been used in order that shear stresses would be in allowed range and provision of hepatocytes with sufficient oxygen concentrations has been ensured as well. In addition to supplying hepatocytes...
Modeling the Endothelial Function in the Brachial Artery Using Photoplethysmography
, M.Sc. Thesis Sharif University of Technology ; Zahedi, Edmond (Supervisor) ; Jahed, Mehran (Supervisor)
Abstract
Flow Mediated Dilation (FMD) is a non-invasive method for endothelial function assessment providing an index extracted from ultrasonic B-mode images. Although utilized in the research community, the difficulty of its application and high cost of ultrasonic device prevent it from being widely used in clinical settings. In this study we show that substituting the ultrasonic device with more easily handled and low cost photoplethysmography and electrocardiography is possible. We introduce new indices based on the photoplethysmogram (PPG) and electrocardiogram (ECG) and show that they are correlated with the ultrasound-based FMD index. To this end, conventional ultrasound FMD test was carried...
Simulation of Optimum Nutrition in Bioreactors
, M.Sc. Thesis Sharif University of Technology ; Abdekhodaie, Mohammad Jafar (Supervisor) ; Mehrvar, Mehrab (Supervisor)
Abstract
In this study, a semi-structured model for the growth and production of lactase in an aerated bioreactor by Kluyveromyces marxianus, growing on cheese whey, was developed. Three modes of culture, consisting of batch, fed-batch and a controlled-release system were investigated. Modeling was based on three metabolic pathways, representing the growth of Kluyveromyces marxianus. Lactose and oxygen consumption, cell growth, and also lactase and ethanol production rates were determined in the model. Induction was considered as the governing mechanism for enzyme production. The model showed good agreement with the experimental data in batch and fed-batch cultures. Controlled-release system is a...
Ontological Study of Metabolic Networks to Develop an Identification Software for Metabolic Networks
, M.Sc. Thesis Sharif University of Technology ; Bozorgmehry Boozarjomehry, Ramin (Supervisor)
Abstract
Simulation of biological behaviors as the pre requirement for control and optimization, especially for recognition and treating diseases, requires studying involved reactions which may or may not be accessible. In the other side, finding the correct network structures and related mathematical expressions to simulate biological behaviors is a complicated problem due to multi aspect interactions among biological reactions, which imply an approach that integrate the knowledge coming from multiple discipline including biological concepts, mathematical modelling, bioinformatics and advanced programming. In this study we aim to analyze this problem using ontological inference to develop a...
Dynamic Simulation and Control of Reactive Systems Involving Metabolic Pathways
, M.Sc. Thesis Sharif University of Technology ; Bozorgmehry Bozarjomehry, Ramin (Supervisor) ; Setoodeh, Payam (Co-Supervisor)
Abstract
In this project, modeling, simulation, and control of the Saccharomyces Cerevisiae were studied. In the first section, simulation and control of a structural model of saccharomyces Cerevisiae were performed. Fuzzy Logic Controller (FLC) as a model-independent controller and Global Linearization Controller (GLC) as a model-based controller were designed. Additionally, two types of Kalman filters were designed to predict all states of the structural model: 1-Extended Kalman Filter (EKF), 2- Unscented Kalman Filter (UKF). As a concise explanation, the control action of the GLC is a function of all states of the model, and since that measuring all metabolites is not practical, the EKF and UKF...
Metabolic Engineering of Yeast Saccharomyces Cerevisiae for Production of Fatty Acids and Its Derivatives
, M.Sc. Thesis Sharif University of Technology ; Roosta Azad, Reza (Supervisor) ; Sardari, Soroush (Supervisor)
Abstract
With the increasing emphasis on production of various chemicals by biotechnology industry, the establishment of optimal cell factories for the maximum production of a specific chemical product will be a serious challenge in large-scale production in this industry. Metabolic engineering is a branch of biochemical engineering that has been developed to achieve this and the approaches in it seek to address this challenge. In this study, focusing on increasing production of fatty acids by yeast cells of Saccharomyces cerevisiae, and using a combination of computational and laboratory methods to present a methodology for the optimal design of culture media. Thus, using the constraint-based...
Context-Specific Reconstruction and Gap-Filling of Metabolic Networks by Sparse Reconciliation of Data Inconsistencies
, M.Sc. Thesis Sharif University of Technology ; Tefagh, Mojtaba (Supervisor)
Abstract
With the increasingly collected biological data, appropriate usage of this data is of great importance for understanding and predicting biological systems and has been the aim of experiments and data collections. A famous category of biological data is known as “omics” which refers to transcriptomics, proteomics, metabolomics, and fluxomics, from different cells or tissues in various media and conditions. This set of data is regularly used for tasks such as studying cells and organisms, understanding cell states, cancer prediction, etc. and is of great importance in Systems Biology.In this thesis, we concentrate on studying cells or organisms using such data, where during that process, we...
Advances in skin regeneration: application of electrospun scaffolds
, Article Advanced Healthcare Materials ; Volume 4, Issue 8 , 2015 , Pages 1114-1133 ; 21922640 (ISSN) ; Boroujeni, S. M ; Omidvarkordshouli, N ; Soleimani, M ; Sharif University of Technology
Wiley-VCH Verlag
2015
Abstract
The paucity of cellular and molecular signals essential for normal wound healing makes severe dermatological ulcers stubborn to heal. The novel strategies of skin regenerative treatments are focused on the development of biologically responsive scaffolds accompanied by cells and multiple biomolecules resembling structural and biochemical cues of the natural extracellular matrix (ECM). Electrospun nanofibrous scaffolds provide similar architecture to the ECM leading to enhancement of cell adhesion, proliferation, migration and neo tissue formation. This Review surveys the application of biocompatible natural, synthetic and composite polymers to fabricate electrospun scaffolds as skin...
Chemometrics comparison of gas chromatography with mass spectrometry and comprehensive two-dimensional gas chromatography with time-of-flight mass spectrometry Daphnia magna metabolic profiles exposed to salinity
, Article Journal of Separation Science ; Volume 41, Issue 11 , 2018 , Pages 2368-2379 ; 16159306 (ISSN) ; Garreta Lara, E ; Campos, B ; Barata, C ; Lacorte, S ; Tauler, R ; Sharif University of Technology
Wiley-VCH Verlag
2018
Abstract
The performances of gas chromatography with mass spectrometry and of comprehensive two-dimensional gas chromatography with time-of-flight mass spectrometry are examined through the comparison of Daphnia magna metabolic profiles. Gas chromatography with mass spectrometry and comprehensive two-dimensional gas chromatography with mass spectrometry were used to compare the concentration changes of metabolites under saline conditions. In this regard, a chemometric strategy based on wavelet compression and multivariate curve resolution–alternating least squares is used to compare the performances of gas chromatography with mass spectrometry and comprehensive two-dimensional gas chromatography with...
3D Bioprinting of oxygenated cell-laden gelatin methacryloyl constructs
, Article Advanced Healthcare Materials ; Volume 9, Issue 15 , 2020 ; Darabi, M. A ; Nasiri, R ; Sangabathuni, S ; Ertas, Y. N ; Alem, H ; Hosseini, V ; Shamloo, A ; Nasr, A. S ; Ahadian, S ; Dokmeci, M. R ; Khademhosseini, A ; Ashammakhi, N ; Sharif University of Technology
Wiley-VCH Verlag
2020
Abstract
Cell survival during the early stages of transplantation and before new blood vessels formation is a major challenge in translational applications of 3D bioprinted tissues. Supplementing oxygen (O2) to transplanted cells via an O2 generating source such as calcium peroxide (CPO) is an attractive approach to ensure cell viability. Calcium peroxide also produces calcium hydroxide that reduces the viscosity of bioinks, which is a limiting factor for bioprinting. Therefore, adapting this solution into 3D bioprinting is of significant importance. In this study, a gelatin methacryloyl (GelMA) bioink that is optimized in terms of pH and viscosity is developed. The improved rheological properties...
NMR spectroscopy-based metabolomic study of serum in sulfur mustard exposed patients with lung disease
, Article Biomarkers ; Volume 22, Issue 5 , 2017 , Pages 413-419 ; 1354750X (ISSN) ; Arefi Oskouie, A ; Rezaei Tavirani, M ; Aliannejad, R ; Taheri, S ; Fathi, F ; Naseri, M. T ; Sharif University of Technology
Taylor and Francis Ltd
2017
Abstract
Sulfur mustard (SM) is a vesication chemical warfare agent for which there is currently no antidote. Despite years of research, there is no common consensus about the pathophysiological basis of chronic pulmonary disease caused by this chemical warfare agent. In this study, we combined chemometric techniques with nuclear magnetic resonance (NMR) spectroscopy to explore the metabolic profile of sera from SM-exposed patients. A total of 29 serum samples obtained from 17 SM-injured patients, and 12 healthy controls were analyzed by Random Forest. Increased concentrations of seven amino acids, glycerol, dimethylamine, ketone bodies, lactate, acetate, citrulline and creatine together with the...
Magnetite nanoparticle as a support for stabilization of chondroitinase ABCI
, Article Artificial Cells, Nanomedicine and Biotechnology ; Volume 47, Issue 1 , 2019 , Pages 2721-2728 ; 21691401 (ISSN) ; Vossoughi, M ; Khajeh, K ; Alemzadeh, I ; Sharif University of Technology
Taylor and Francis Ltd
2019
Abstract
Chondroitinase ABCI (cABCI) is a drug enzyme that can be used to treat spinal cord injuries. Due to low thermal stability of cABCI, this enzyme was immobilized on Fe3O4 nanoparticle to increase its thermal stability. The size and morphology, structure and magnetic property of the Fe3O4 nanoparticles were characterized by the analyses of SEM, XRD and VSM, respectively, and FTIR spectroscopy was employed to confirm the immobilization of cABCI on the surface of Fe3O4 nanoparticles. The results indicated that the optimum conditions for pH, temperature, cABCI-to-Fe3O4 mass ratio and incubation time in immobilization process were 6.5, 15 °C, 0.75 and 4.5 h, respectively, and about 0.037 mg cABCI...
Design and analysis of an original powered foot clearance creator mechanism for walking in patients with spinal cord injury
, Article Disability and Rehabilitation: Assistive Technology ; Volume 14, Issue 4 , 2019 , Pages 333-337 ; 17483107 (ISSN) ; Badri, S ; Shayestehepour, H ; Arazpour, M ; Farahmand, F ; Mousavi, M. E ; Abdolahi, E ; Farkhondeh, H ; Head, J. S ; Golchin, N ; Mardani, M. A ; Sharif University of Technology
Taylor and Francis Ltd
2019
Abstract
Background: The aim of this study was to assess the performance of an original powered foot clearance creator (PFCC) mechanism worn in conjunction with an isocentric reciprocal gait orthosis (IRGO) and evaluate its effect on trunk compensatory movements and spatiotemporal parameters in nine healthy subjects. Method: A PFCC motorized mechanism was designed that incorporated twin sole plates, the movements of which enabled increased toe to floor clearance during swing phase. A prototype was constructed in combination with an IRGO, and hence was re-named as an IRGO-PFCC orthosis. The effects of IRGO-PFCC usage on the spatiotemporal parameters and trunk compensatory movements during walking were...
Metabolic load comparison between the quarters of a game in elite male basketball players using sport metabolomics
, Article European Journal of Sport Science ; 2020 ; Gaeini, A. A ; Shirzad, E ; Gilany, K ; Chashniam, S ; Sandbakk, Ø ; Sharif University of Technology
Taylor and Francis Ltd
2020
Abstract
Purpose: A basketball match is characterized by intermittent high-intensity activities, thereby relying extensively on both aerobic and anaerobic metabolic pathways. Here, we aimed to compare the metabolic fluctuations between the four 10-min quarters of high-level basketball games using metabolomics analyses. Methods: 70 male basketball players with at least 3 years of experience in the Iran national top-league participated. Before and after each quarter, saliva samples were taken for subsequent untargeted metabolomics analyses, where Principal component analysis (PCA) and Partial least squares-discriminant analysis (PLS-DA) were employed for statistical analysis. Results: Quarters 1 and 3...
Metabolic load comparison between the quarters of a game in elite male basketball players using sport metabolomics
, Article European Journal of Sport Science ; Volume 21, Issue 7 , 2021 , Pages 1022-1034 ; 17461391 (ISSN) ; Gaeini, A. A ; Shirzad, E ; Gilany, K ; Chashniam, S ; Sandbakk, Ø ; Sharif University of Technology
Taylor and Francis Ltd
2021
Abstract
Purpose: A basketball match is characterized by intermittent high-intensity activities, thereby relying extensively on both aerobic and anaerobic metabolic pathways. Here, we aimed to compare the metabolic fluctuations between the four 10-min quarters of high-level basketball games using metabolomics analyses. Methods: 70 male basketball players with at least 3 years of experience in the Iran national top-league participated. Before and after each quarter, saliva samples were taken for subsequent untargeted metabolomics analyses, where Principal component analysis (PCA) and Partial least squares-discriminant analysis (PLS-DA) were employed for statistical analysis. Results: Quarters 1 and 3...
Nanomechanical properties of MscL α helices: A steered molecular dynamics study
, Article Channels ; Volume 11, Issue 3 , 2017 , Pages 209-223 ; 19336950 (ISSN) ; Bavi, O ; Vossoughi, M ; Naghdabadi, R ; Hill, A. P ; Martinac, B ; Jamali, Y ; Sharif University of Technology
Taylor and Francis Inc
2017
Abstract
Gating of mechanosensitive (MS) channels is driven by a hierarchical cascade of movements and deformations of transmembrane helices in response to bilayer tension. Determining the intrinsic mechanical properties of the individual transmembrane helices is therefore central to understanding the intricacies of the gating mechanism of MS channels. We used a constant-force steered molecular dynamics (SMD) approach to perform unidirectional pulling tests on all the helices of MscL in M. tuberculosis and E. coli homologs. Using this method, we could overcome the issues encountered with the commonly used constant-velocity SMD simulations, such as low mechanical stability of the helix during...
N-doped CNT nanocatalyst prepared from camphor and urea for gas phase desulfurization: experimental and DFT study
, Article Journal of the Taiwan Institute of Chemical Engineers ; Volume 85 , April , 2018 , Pages 121-131 ; 18761070 (ISSN) ; Banna Motejadded, H ; Rashidi, A ; Hamzehlouyan, T ; Yousefian, Z
Taiwan Institute of Chemical Engineers
2018
Abstract
In the present work, mesoporous nitrogen-doped carbon nanotubes (N-CNTs) were synthesized by using a low-cost and unique set of precursors (camphor and urea). The CVD method at 1000 °C was used with different camphor/urea ratios, and Co-Mo/MgO nanocatalyst was utilized as growth catalyst. Application of mesoporous N-CNTs in selective oxidation of H2S was studied experimentally and N-CNTs interactions with H2S was also investigated using DFT calculations. The as-synthesized N-CNTs were characterized using FTIR, FE-SEM, elemental analysis, X-ray diffraction (XRD), XPS and nitrogen adsorption/desorption. The N-CNT2 sample with urea to camphor ratio (U/C) of 1 showed the highest sulfur yield at...
Genome annotation and comparative genomic analysis of Bacillus subtilis MJ01, a new bio-degradation strain isolated from oil-contaminated soil
, Article Functional and Integrative Genomics ; Volume 18, Issue 5 , 2018 , Pages 533-543 ; 1438793X (ISSN) ; Niazi, A ; Deihimi, T ; Taghavi, S. M ; Ayatollahi, S ; Ebrahimie, E ; Sharif University of Technology
Springer Verlag
2018
Abstract
One of the main challenges in elimination of oil contamination from polluted environments is improvement of biodegradation by highly efficient microorganisms. Bacillus subtilis MJ01 has been evaluated as a new resource for producing biosurfactant compounds. This bacterium, which produces surfactin, is able to enhance bio-accessibility to oil hydrocarbons in contaminated soils. The genome of B. subtilis MJ01 was sequenced and assembled by PacBio RS sequencing technology. One big contig with a length of 4,108,293 bp without any gap was assembled. Genome annotation and prediction of gene showed that MJ01 genome is very similar to B. subtilis spizizenii TU-B-10 (95% similarity). The comparison...
Modeling, simulation, and employing dilution–dialysis microfluidic chip (DDMC) for heightening proteins refolding efficiency
, Article Bioprocess and Biosystems Engineering ; Volume 41, Issue 5 , 2018 , Pages 707-714 ; 16157591 (ISSN) ; Masoudi, M. M ; Shamloo, A ; Habibi Rezaei, M ; Moosavi Movahedi, A. A ; Sharif University of Technology
Springer Verlag
2018
Abstract
Miniaturized systems based on the principles of microfluidics are widely used in various fields, such as biochemical and biomedical applications. Systematic design processes are demanded the proper use of these microfluidic devices based on mathematical simulations. Aggregated proteins (e.g., inclusion bodies) in solution with chaotropic agents (such as urea) at high concentration in combination with reducing agents are denatured. Refolding methods to achieve the native proteins from inclusion bodies of recombinant protein relying on denaturant dilution or dialysis approaches for suppressing protein aggregation is very important in the industrial field. In this paper, a modeling approach is...