Loading...
Search for: metal-ions
0.016 seconds
Total 150 records

    Design of an Optoelectronic Tongue Based on Anti-Aggregation of Gold Nanoparticles for Detection and Classification of Heavy Metal Ions

    , M.Sc. Thesis Sharif University of Technology Najafzadeh, Fatemeh (Author) ; Hormozi-Nezhad, Mohammad Reza (Supervisor)
    Abstract
    The first report of anti-aggregation-based sensor arrays is presented. The strategy is based on the competitive interaction of citrate-capped gold nanoparticles (AuNPs) and heavy metal ions (i.e., Hg(II), Ag(I), Fe(III), and Pb (II)) with three aggregation reagents (i.e., cysteine, melamine, and arginine). In the presence of aggregation reagent,the color and UV–vis spectra of AuNPs are changed indicating the aggregation ofAuNPs. Addition of the aggregation reagents which are firstly treated with the ions, causes AuNPs turn from the aggregation to the dispersion state. The anti-aggregation capability of ions towards various aggregation reagents is different because of distinct stability... 

    Removal of Heavy Metal Ions and Wastewater Treatment by Using the Electrocoagulation Process

    , M.Sc. Thesis Sharif University of Technology Dehnavi, Mehdi (Author) ; Ghasemian, Saloumeh (Supervisor)
    Abstract
    Industrial wastewater treatment has always been one of the significant human being problems for the years. In particular, sewage containing heavy metals that, if discharged into nature, would have irreversible effects on the ecosystem and human health. Due to their toxic nature, heavy metals will reduce the efficiency of wastewater treatment systems if they are not efficiently treated. Also, the removal of Nitrate from the wastewater, which is one of the most stable nitrogen oxides, has always been a serious human problem in the treatment of effluents due to their high solubility in water. The simultaneous presence of nitrate and heavy metals in the effluent will cause many problems in the... 

    Developments of Fluorescence Sensor Arrays Using Nanostructured Sensor Elments and Nanocellulose Substrate for Identification and Discrimination of Biomolecules and Environmental pollutants

    , Ph.D. Dissertation Sharif University of Technology Abbasi-Moayed, Samira (Author) ; Hormozi-Nezhad, Mohammad Reza (Supervisor) ; Golmohammadi Ghaneh, Hamed (Co-Supervisor)
    Abstract
    In the first part of this research, a ratiometric fluorescent sensor array has been developed on nanocellulose platform towards chemical discrimination applications. Bacterial nanocellulose (BC) was utilized for the first time as a novel, flexible and transparent substrate in optical sensor arrays for developing portable and high performance sensor array.. To fabricate this platform, the hydrophobic walls on BC nanopaper substrates were successfully created using laser printing technology. In addition, we have used the properties of immobilized ratiometric fluorescence sensor elements (Carbon Dots- Rhodamine B (CDs-RhB) nanohybrids) on nanopaper platform to improve the visual... 

    Preparation of Thin-Film Nanocomposite Membranes Based on Metal-Organic Frameworks (Mofs) and Study of their Performance in Forward Osmosis (Fo) Process

    , Ph.D. Dissertation Sharif University of Technology Bayrami, Arshad (Author) ; Bagherzadeh, Mojtaba (Supervisor)
    Abstract
    The forward osmosis (FO) process is a high potential emerging membrane process in the seawater desalination and contaminated water treatment fields. One of the main challenges facing this process is the weak separation (high reverse solute flux, low water flux, and insufficient selectivity) and antifouling performances of its membranes. Various sections of this study focus on the development of FO membranes and their performance improvement. For this purpose, thin-film composite membranes with the same combination of polyethersulfone/polyamide (PES/PA) have been used to investigate the effect of metal-organic frameworks (MOFs) introduction on their performance. The support layer in all cases... 

    Immobilization Heavy Metal Ions and Nanoparticles (Au, Cu, Pd) on Biopolymers and Their Catalytic Activities in the Organic Reactions

    , Ph.D. Dissertation Sharif University of Technology Habibi, Zahra (Author) ; Pourjavadi, Ali (Supervisor)
    Abstract
    Recently, biopolymers such as alginate, cellulose, chitosan, gelatine, starch and wool have been used as supports for catalytic applications. Several interesting features of the biopolymers for example, bio-degradable, environmentally safe, high sorption capacity, physical and chemical versatility make them attractive to use as supports. This study, the four functionalized biopolymer-based composites were designed and synthesized as well as heterogeneous catalysts used in the synthesis of 1,2,3-triazoles, oxidation of alcohol, reduction of nitroarenes and carbon-carbon coupling reactions.A novel cellulose supported copper NHC complex has been prepared by the reaction of cellulose supported... 

    Investigation and Determination of Optimal Composition of Hydrogels and Nanoparticles for Proliferation of Mesenchymal Stem Cells in Alginate Beads

    , M.Sc. Thesis Sharif University of Technology Akbari Kenari, Mahsa (Author) ; Yaghmaei, Soheila (Supervisor) ; Arpanaei, Ayyoob (Supervisor)
    Abstract
    The aim of this dissertation is to investigate and determine the optimal composition of hydrogels that can meet the needs of stem cells for the growth and proliferation of mesenchymal stem cells. In this research, firstly, unfunctionalized and functionalized mesoporous silica nanoparticles (with an average diameter of approximately 90 nm), were synthesized. Scanning electron microscopy and zeta potential measurement were utilized to study their morphology and surface charge. Then, graphene oxide nanosheets were synthesized. Field emission electron microscopy, zeta potential measurement and Fourier transform infrared spectrum analysis were used to examine their morphology, surface charge and... 

    Investigation of Amyloid-Beta Inhibition using Multifunctional Peptide Drugs Associated with Metal Ions

    , Ph.D. Dissertation Sharif University of Technology Asadbegi, Mohsen (Author) ; Shamloo, Amir (Supervisor)
    Abstract
    Many experimental and theoretical studies have suggested that zinc binding to Aβ could promote amyloid-β aggregation and reactive oxygen species (ROS) production induced by AD disease. Therefore, the introduction of multifunctional drugs capable of chelating zinc metal ion and inhibiting Aβ aggregation is a promising strategy in the development of AD treatment. In present study molecular docking and molecular dynamics (MD) simulations were used to evaluate the efficacy of two new bifunctional peptide drug, composed of two different domains: C-terminal hydrophobic region of Aβ and Zn2+ chelator region. To evaluate the multifunctionality of the ligands, a comprehensive set of MD simulations up... 

    Thermochemical Properties of Thymine & Deoxythymidine

    , M.Sc. Thesis Sharif University of Technology Shakorian Fard, Mehdi (Author) ; Fattahi, Alireza (Supervisor)
    Abstract
    Nowadays, there is no doubt about the importance of investigation of physicochemical properties of nucleosides in order to determine the structure of these biopolymers. Nucleotides have a variety of roles in cellular metabolism. They are the constituents of nucleic acids: deoxyribonucleic acid (DNA) and ribonucleic acid (RNA), the molecular repositories of genetic information. The metal ions play a significant role in several biological processes. Synthesis, replication, and cleavage of DNA and RNA as well as their structure integrity are affected by the presence of these ionized metals in the cell nucleus. To understand the role of cations in the biophysics of DNA, it is necessary first to... 

    Zeolite-based catalytic micromotors for enhanced biological and chemical water remediation

    , Article New Journal of Chemistry ; Volume 44, Issue 44 , 2020 , Pages 19212-19219 Abedini, F ; Madaah Hosseini, H. R ; Sharif University of Technology
    Royal Society of Chemistry  2020
    Abstract
    Zeolite-based micromotors were developed to eliminate the biological and chemical contamination of water in a fast and efficient way. The motors consist of a silver-exchanged zeolite core and a partial catalytic coating. These porous engines showed rapid killing of Pseudomonas aeruginosa bacteria cells in a very short time, less than 7.5 minutes. The heavy metal uptake of the zeolitic motors during the first 20 minutes of contact was considerably higher than that of zeolite particles by 23% for Pb2+, 19% for Co2+, and 16% for Ni2+. Also, the maximum removal efficiency of the motors (at room temperature and for 6 hours) for Pb2+, Co2+, and Ni2+ was 93%, 87%, and 78%, respectively, higher than... 

    Wettability alteration and oil recovery by spontaneous imbibition of low salinity brine into carbonates: Impact of Mg2+, SO4 2− and cationic surfactant

    , Article Journal of Petroleum Science and Engineering ; Volume 147 , 2016 , Pages 560-569 ; 09204105 (ISSN) Karimi, M ; Al-Maamari, R. S ; Ayatollahi, S ; Mehranbod, N ; Sharif University of Technology
    Elsevier B.V  2016
    Abstract
    A large amount of the discovered oil reserves are reserved in carbonate formations, which are mostly naturally fractured oil-wet. Wettability alteration towards more water-wet state reduces the capillary barrier, hence improving the oil recovery efficiency in such reservoirs. In this study, wettability alteration towards favorable wetting state was investigated by combining modified low salinity brine with surfactant during water flooding. The diluted brine was modified by increasing the concentration of Mg2+ and SO4 2−, individually as well as both ions in combination. Different brine formulations were tested experimentally through the observations of contact angle measurements and... 

    Water treatment using stimuli-responsive polymers

    , Article Polymer Chemistry ; Volume 13, Issue 42 , 2022 , Pages 5940-5964 ; 17599954 (ISSN) Abousalman Rezvani, Z ; Roghani Mamaqani, H ; Riazi, H ; Abousalman Rezvani, O ; Sharif University of Technology
    Royal Society of Chemistry  2022
    Abstract
    Water treatment is a process used to eliminate or reduce chemical and biological contaminants that are potentially harmful to the water supply for human use. Stimuli-responsive polymers are a new category of smart materials used in water treatment via a stimuli-induced purification process and subsequent regeneration of the polymers. Stimuli-responsive polymers dynamically change their physico-chemical properties upon environmental changes. They can undergo shrinkage or expansion, alter their optical properties, and change their electrical characteristics depending on the applied stimuli. In this context, various stimuli-responsive polymer systems such as self-assembled nanostructures,... 

    Water adsorption in the organic phase for the D2EHPA-kerosene/water and aqueous Zn2+, Co2+, Ni2+ sulphate systems

    , Article Hydrometallurgy ; Volume 88, Issue 1-4 , 2007 , Pages 92-97 ; 0304386X (ISSN) Darvishi, D ; Haghshenas, D. F ; Etemadi, S ; Keshavarz Alamdari, E ; Sadrnezhaad, Kh ; Sharif University of Technology
    2007
    Abstract
    Water adsorption by bis-2-ethylhexyl phosphoric acid (D2EHPA) during the extraction of zinc, cobalt and nickel using a D2EHPA-kerosene/H2O mixture is investigated. Based on the experimental results, about 1 mol of water is adsorbed by 2 mol of D2EHPA (which exists in the form of a dimer), irrespective of the pH. Water adsorption decreases with presence of zinc, cobalt and nickel. The stoichiometric coefficients of D2EHPA in water adsorption reactions are determined with and without zinc, cobalt and nickel by applying the slope-analysis method. It is experimentally confirmed that 1.0, 1.8 and 1.2 mol of adsorbed water will be rejected from the organic phase when zinc, cobalt and nickel are... 

    Vanadium oxide-supported copper ferrite nanoparticles: A reusable and highly efficient catalyst for rhodamine B degradation via activation of peroxymonosulfate

    , Article Applied Organometallic Chemistry ; Volume 35, Issue 10 , 2021 ; 02682605 (ISSN) Salami, R ; Amini, M ; Bagherzadeh, M ; Chae, K. H ; Sharif University of Technology
    John Wiley and Sons Ltd  2021
    Abstract
    A magnetic vanadium oxide nanoparticles supported on spinel copper ferrite (CuFe2O4–VOx) are prepared, characterized, and examined for the peroxymonosulfate (PMS) activation to degrade Rhodamine B (RhB) in water solution. Interestingly, the results show that despite the inability of mixture of copper ferrite and vanadium oxides nanoparticles to the effective RhB decomposition, the prepared catalyst exhibits an excellent catalytic ability toward RhB oxidation. The influence of vital parameters, such as temperature, PMS concentration, catalyst loading, and initial pH are discussed comprehensively. The kinetic studies demonstrate that the pseudo-first-order model is well fitted for RhB... 

    Valence and conduction band tuning in halide perovskites for solar cell applications

    , Article Journal of Materials Chemistry A ; Volume 4, Issue 41 , 2016 , Pages 15997-16002 ; 20507488 (ISSN) Meloni, S ; Palermo, G ; Ashari Astani, N ; Grätzel, M ; Rothlisberger, U ; Sharif University of Technology
    Royal Society of Chemistry  2016
    Abstract
    We performed density functional calculations aimed at identifying the atomistic and electronic structure origin of the valence and conduction band, and band gap tunability of halide perovskites ABX3 upon variations of the monovalent and bivalent cations A and B and the halide anion X. We found that the two key ingredients are the overlap between atomic orbitals of the bivalent cation and the halide anion, and the electronic charge on the metal center. In particular, lower gaps are associated with higher negative antibonding overlap of the states at the valence band maximum (VBM), and higher charge on the bivalent cation in the states at the conduction band minimum (CBM). Both VBM orbital... 

    Ultrasound-electrospinning-assisted fabrication and sensing evaluation of a novel membrane as ultrasensitive sensor for copper (II) ions detection in aqueous environment

    , Article Ultrasonics Sonochemistry ; Volume 44 , June , 2018 , Pages 152-161 ; 13504177 (ISSN) Gao, W ; Haratipour, P ; Rezaie Kahkha, M. R ; Tahvili, A ; Sharif University of Technology
    Elsevier B.V  2018
    Abstract
    The present study has reported an optimized fabrication and application of a novel PVA/TEOS/Schiff base nanofibers membrane as a highly sensitive copper (II) ions in aqueous environment. Here in, for first time, an ultrasound-assisted synthesized symmetric Schiff base has been immobilized on a hybrid polyvinyl alcohol (PVA) and TEOS using electrospinning technique for detection and filtration of copper ions. For this purpose, various working parameters were evaluated and finally the optimized nano fibers membrane was synthesized with 72 nm thickness and PVA/TEOS/Schiff base ratio of (wt%) 8:6:1. The optimized sample named PTLNFM has been employed successfully as an ultra sensitive... 

    UiO-66 metal–organic frameworks in water treatment: A critical review

    , Article Progress in Materials Science ; Volume 125 , 2022 ; 00796425 (ISSN) Ahmadijokani, F ; Molavi, H ; Rezakazemi, M ; Tajahmadi, S ; Bahi, A ; Ko, F ; Aminabhavi, T. M ; Li, J. R ; Arjmand, M ; Sharif University of Technology
    Elsevier Ltd  2022
    Abstract
    Metal-organic frameworks (MOFs) have recently achieved much attention to eliminating toxic pollutants because of their attractive attributes, including large specific surface area, ultra-high porosity, abundant active adsorption sites, tunable surface chemistry, well-controlled pore size distribution, and strong host–guest interactions. Among the many developed MOFs, the Zr-based MOFs, particularly the UiO-66 family, are considered extremely attractive for wastewater treatment applications. The fascinating properties of UiO-66 such as high thermal stability, superior chemical resistance towards several solvents, including benzene, acetone, different alcohols, dimethylformamide, acidic and... 

    Transition metal ions effect on the properties and photocatalytic activity of nanocrystalline TiO2 prepared in an ionic liquid

    , Article Journal of Hazardous Materials ; Volume 172, Issue 2-3 , 2009 , Pages 1573-1578 ; 03043894 (ISSN) Ghasemi, S ; Rahimnejad, S ; Setayesh, S. R ; Rohani, S ; Gholami, M. R ; Sharif University of Technology
    Abstract
    TiO2 and transition metal (Cr, Mn, Fe, Co, Ni, Cu, and Zn) doped TiO2 nanoparticles were synthesized by the sol-gel method using 2-hydroxylethylammonium formate as an ionic liquid. All the prepared samples were calcined at 500 °C and characterized by X-ray diffraction (XRD), BET surface area determination, energy dispersive X-ray (EDX) analysis, diffuse reflectance spectroscopy (DRS), and Fourier transformed infrared (FT-IR) techniques. The studies revealed that transition metal (TM) doped nanoparticles have smaller crystalline size and higher surface area than pure TiO2. Dopant ions in the TiO2 structure caused significant absorption shift into the visible region. The results of... 

    Transition metal ions-doped polyaniline/graphene oxide nanostructure as high performance electrode for supercapacitor applications

    , Article Journal of Solid State Electrochemistry ; 2017 , Pages 1-14 ; 14328488 (ISSN) Asen, P ; Shahrokhian, S ; Zad, A. I ; Sharif University of Technology
    Abstract
    Polyaniline/graphene oxide (PANI/GO) co-doped with Zn2+ and Fe3+ was synthesized via a simple and low cost one-step chronoamperometry method on stainless steel (SS) as the substrate. The Fe3+-Zn2+-PANI/GO nanocomposite is characterized using X-ray diffraction as well as Fourier transform infrared spectroscopy, energy-dispersive X-ray spectroscopy, transmission electron microscopy, and field emission scanning electron microscopy. Also, cyclic voltammetry, galvanostatic charge-discharge, and electrochemical impedance spectroscopy are used to study the electrochemical performance of the as-prepared electrode materials. Significantly, the Fe3+-Zn2+-PANI/GO nanocomposite exhibits a specific... 

    Transition metal ions-doped polyaniline/graphene oxide nanostructure as high performance electrode for supercapacitor applications

    , Article Journal of Solid State Electrochemistry ; Volume 22, Issue 4 , 2018 , Pages 983-996 ; 14328488 (ISSN) Asen, P ; Shahrokhian, S ; Iraji Zad, A ; Sharif University of Technology
    Springer New York LLC  2018
    Abstract
    Polyaniline/graphene oxide (PANI/GO) co-doped with Zn2+ and Fe3+ was synthesized via a simple and low cost one-step chronoamperometry method on stainless steel (SS) as the substrate. The Fe3+-Zn2+-PANI/GO nanocomposite is characterized using X-ray diffraction as well as Fourier transform infrared spectroscopy, energy-dispersive X-ray spectroscopy, transmission electron microscopy, and field emission scanning electron microscopy. Also, cyclic voltammetry, galvanostatic charge-discharge, and electrochemical impedance spectroscopy are used to study the electrochemical performance of the as-prepared electrode materials. Significantly, the Fe3+-Zn2+-PANI/GO nanocomposite exhibits a specific... 

    Towards developing efficient metalloporphyrin-based hybrid photocatalysts for CO2reduction; an: ab initio study

    , Article Physical Chemistry Chemical Physics ; Volume 22, Issue 40 , 2020 , Pages 23128-23140 Ostovan, A ; Papior, N ; Zahedi, M ; Moshfegh, A. Z ; Sharif University of Technology
    Royal Society of Chemistry  2020
    Abstract
    A series of thiophene-based donor-acceptor-donor (D-A-D) oligomer substituted metalloporphyrins (MPors) with different 3d central metal-ions (M = Co, Ni, Cu, and Zn) were systematically investigated to screen efficient hybrid photocatalysts for CO2 reduction based on density functional theory (DFT) and time-dependent DFT simulations. Compared with base MPors, the newly designed hybrid photocatalysts have a lower bandgap energy, stronger and broader absorption spectra, and enhanced intermolecular charge transfer, exciton lifetime, and light-harvesting efficiency. Then, the introduction of D-A-D electron donor (ED) groups into the meso-positions of MPors is a promising method for the...