Loading...
Search for: metals
0.021 seconds
Total 1755 records

    Performance-Based Design of Steel Structures with Metallic damper Using Endurance Time Method

    , M.Sc. Thesis Sharif University of Technology Yousefian Moghadam, Sina (Author) ; Esmaeil Pourestekanchi, Homayoun (Supervisor)
    Abstract
    Preventing critical damages to structures and hence saving the lives and money is an inevitable work which a designer has to do. During the earthquake, huge amount of energy applies to the structure and finding a way to reduce transfer of this energy to main structure is crucial. For this purpose, Structural Control systems may be used. Metallic Dampers are one of those systems which absorb the earthquake input energy by having nonlinear deformations. In this Thesis, one type of this dampers which is innovated by Estekanchi, have been studied .Indeed, this damper is a connection between bracing and main frame. In this damper a U shape part acts as a sacrificing portion and absorbs energy by... 

    Parametric Investigation on Microstructure and Mechanical Properties of Ultrasonic Spot welded Aluminium and Copper Sheets

    , M.Sc. Thesis Sharif University of Technology Yosefi, Ali (Author) ; Kokabi, Amir Hossain (Supervisor) ; Abedini, Rezvan (Co-Supervisor)
    Abstract
    Ultrasonic metal welding is a solid state welding process and is widely used in welding the connections of lithium-ion battery batteries in hybrid and plug-in hybrid vehicles. This welding process has advantages over fusion welding processes such as; Shorter time, no heat affected area, optimal energy consumption, cheaper equipment and no harm to the environment. The aim of this study was to investigate the effect and optimization of time, normal pressure and oscillation amplitude parameters in order to achieve the maximum tensile-shear test force and T-peel test in the dissimilar welding of 1050 aluminum and copper (purity above 99.9%). In order to achieve the optimal state of welding... 

    Synthesis and Electrochemical Evaluation of Graphene-Ni/Cu/Zn Nanocomposite Coating Modified by Pt/Ru Nanoparticles

    , Ph.D. Dissertation Sharif University of Technology Yaghoubinezhad, Yadollah (Author) ; Afshar, Abdollah (Supervisor)
    Abstract
    In this research,Graphene Oxide nanoplatelets (GO) were synthesized by chemically modified Hummer's method.After the GO nanosheets electrochemically reduced to graphene, nanoparticles imposed to this thin film.This optimized nanostructure coating was utilized for investigating the Hydrogen Evolution Reaction (HER) over the copper substrate. In order to optimize the kinetic of electrodeposition and reduction, diverse electrochemical approaches such as cyclic voltammetry, chronoamperometic and potentiometric as well as pulse electrodeposition methods were employed. Electrochemical procedures were aligned by Design of Experiment (DOE) ... 

    Synthesis of Novel Bimetallic Nanocomposite of Copper and Silver Based on Metal Organic Frameworks and Investigation of Its Application as Catalyst in Sulfonation Reaction

    , M.Sc. Thesis Sharif University of Technology Yaghoubnejad Pazoki, Parisa (Author) ; Matloubi Moghaddam, Firouz (Supervisor)
    Abstract
    In recent years, bimetallic metal-organic frameworks have attracted the great attention of researchers due to their dual properties and synergistic effects. In this research and inspired by green chemistry, the synthesis of a magnetic nanocomposite of the defective green metal-organic framework was implemented, which carries metallic silver nanoparticles (Ag NPs@Cu-MOF). Then, the sulfonated compounds were synthesized with the prepared nanocomposite because of the importance and widespread medicinal use of sulfur-containing compounds especially sulfonated compounds, and the difficulty of their preparation methods. It is noteworthy to mention that the sulfonation reaction was done by... 

    Evaluation of the Cyclic Performance of Buckling Restrained Braces with Sliding Friction Connection

    , M.Sc. Thesis Sharif University of Technology Yazdani Kachoie, Pedram (Author) ; Mofid, Masood (Supervisor)
    Abstract
    In today’s world, the use of lateral load-bearing systems, such as bracings, has become a pretty common practice. Often showing axial deformation behavior, these members exhibit proper performance under tensile loads but tend to become unstable under compressive loads. In contrast to common bracing systems, the buckling-restrained bracing (BRB) systems perform well under not only tensile loads but also compressive loads. Recent studies have paid greater deals of attention to the application of short-core BRB systems in different structures. The bracing core has been shortened to increase the core deformation and hence the energy dissipation capacity of the bracing system. In this condition,... 

    Preparation and Characterization of Nanostructural Ternary Mixed Oxide Containing Ti/Ru/Ir on Titanium by Sol-gel Process for MMO Electrode

    , Ph.D. Dissertation Sharif University of Technology Goudarzi, Mona (Author) ; Ghorbani, Mohammad (Supervisor)
    Abstract
    In this study, ternary metal oxide coating consisting of Ti, Ru, Ir were prepared by sol-gel method. In order to achieve optimal conditions, the effect of number of layers, temperature and velocity of the heat treatment, the amount of ruthenium and iridium, polymeric additive on the coating and also, comparisons of binary and ternary oxide coatings were studied. The corrosion behavior was examined by anodic polarization and cyclic voltammetry tests and accelerated stability test (AST), the morphology of coatings was studied by field emission scanning electron microscopy (FESEM), phase and elemental analysis was performed using X-ray diffraction (XRD) and energy dispersive spectroscopy... 

    Analysis, Design and Manufacturing of Custom Osteotomy Implants Forming Machine

    , M.Sc. Thesis Sharif University of Technology Gomari, Behnam (Author) ; Farahmand, Farzam (Supervisor) ; Farkhondeh, Hassan (Supervisor)
    Abstract
    Knee arthritis is a painful disease from which millions of people around the world are suffering. One of the main causes of osteoarthritis and joint damage that starts from a young age, is that bones around the knee are not in a straight line. As a result, this situation causes additional pressure to the knee. This should be corrected with surgery. There are two procedures for this operation, a conventional method and a customized method. In conventional method, surgical planning is based on 2d X-ray images and plates are formed and fixed approximately at the desired location. This method is not precise enough and may cause problems for the patient. A new developing method, is that all the... 

    CMOS Frequency Multiplier Design for Millimeter-Wave Imaging System

    , M.Sc. Thesis Sharif University of Technology Kiyaei, Alireza (Author) ; Fakharzadeh Jahromi, Mohammad (Supervisor)
    Abstract
    In this study، a novel frequency multiplier chain for wideband millimeter-wave applications at 28 GHz is presented. Millimeter-wave imaging systems require high frequency and wide bandwidth to accurately detect hidden objects. Various methods have been proposed to increase the frequency of generated signals, but in the meantime، frequency multiplier structures exhibit better performance in terms of bandwidth، power consumption and, harmonic rejection. These circuits are widely used in High-frequency telecommunication systems such as 5th generation mobile services. To design a frequency quadrupler، two multiplier stages based on the improved quadrature Gilbert structure were used. Generating... 

    Using Image Processing Technique for Measuring Strain and Stress in Complex Sheet Metals

    , M.Sc. Thesis Sharif University of Technology Koohpayeh, Ali (Author) ; Asempour, Ahmad (Supervisor)
    Abstract
    In this project, by using the image processing method, the strain rate in the deformed sheets is measured, and then compared with experimental results. Scratches are first drawn on the surface of the sheet. After the deformation, photographs of the surface are taken, by using image processing method as well as the use of special techniques, the strain is obtained fast with accurately. By determining the strain, tension will also be achieved through Levy Mises relations. In this project, by using this method, the strain is calculated on surfaces with simple geometry, such as sphere (spherical surface of the sheet in the FLD test), as well as surfaces whose surface geometry is unknown and... 

    Development of a Nonlinear Inverse Finite Element Method in Strain Analysis of sheet metal forming

    , M.Sc. Thesis Sharif University of Technology Kangarani Farahani, Mohammad (Author) ; Assempour, Ahmad (Supervisor)
    Abstract
    An inverse finite element method (IFEM) has been developed for estimation of the blank size and prediction of the strain distribution in sheet metal forming. This approach deals with logarithmic large strains of membrane triangular elements, deformation theory of plasticity, virtual work principle and a new approach for friction modeling. This method leads to a system of nonlinear equations which is highly sensitive to the initial guess. In order to avoid the converging problems, especially in the quasi vertical walls, an appropriate initial guess is introduced. As well, the number of iterations in the nonlinear numerical solution is decreased by using this initial guess and the solution... 

    Design and Implementation of a 15 dBm CMOS Power Amplifier

    , M.Sc. Thesis Sharif University of Technology Kalantari Mahmoud Abadai, Milad (Author) ; Medi, Ali (Supervisor)
    Abstract
    Today, phased array antennas have important role in wireless communication systems. Utilizing optimum channel capacity, having better signal to noise ratio and, high data rate are the most important features of these systems. These systems are composed of several thousands of separated transceivers which provide possibility of directional electromagnetic radiation by changing the phase and the amplitude of the signal in each transceiver independently. So, the main components of such a system are amplifiers, phase shifters and, amplitude controllers. Also a high resolution phased array military radar system is another vital applications of these systems at frequency band of 9-10 GHz. The... 

    Theory and Simulation of Nonlinear Transmission Lines Using MOSFET Devices

    , M.Sc. Thesis Sharif University of Technology Kalantar Hojjatabadi, Mohsen (Author) ; Farzaneh, Forouhar (Supervisor)
    Abstract
    Nonlinear transmission line (NLTL) a guiding structure contains nonlinear elements. For discrete NLTLs, this structure is periodically loaded with nonlinear elements. In the structure of this line nonlinear elements such as ceramic capacitors, nonlinear magnetic elements, vector diodes, Mos transistors, etc can be used. With the rapid development of semiconductor devices and microwave band systems, the demand for implementation of NLTLs has increased. These lines provide wide band-width, cut-off frequencies over the hundreds of GHz and picosecond rise time for various systems.Among the applications of NLTL, the generation of high power RF pulses has attracted the most attention. In this... 

    Design of Metamaterials for Transparent Electrodes, Anti-Reflection Coating, and Light Trapping Structures

    , M.Sc. Thesis Sharif University of Technology Kafaie Shirmanesh, Ghazaleh (Author) ; Mehrany, Khashayar (Supervisor) ; Khavasi, Amin (Co-Advisor)
    Abstract
    In several electro-optic and optoelectronic devices, we require the structures with simultaneous high electrical conductivity and optical transparency so as to transmit the incident light. Transparent Conductive Electrodes (TCEs) that are both highly conductive and transparent were introduced to be an answer to the mentioned challenge. Periodic arrays of metallic holes are amongst the most important structures that are used as transparent electrodes. Using the metals with low electrical resistivity, such as Au and Ag, provides these structures with high electrical conductance. On the other hand, since these micro/nano structures support the propagation of guided electromagnetic waves, light... 

    Preparation of Nitrogen Rich Magnetic Nanocomposite for Immobilization of Transition Metals and Investigation of their Catalytic Activity in Organic Reactions

    , Ph.D. Dissertation Sharif University of Technology Keshavarzi, Nahid (Author) ; Pourjavadi, Ali (Supervisor) ; Matloubi, Firouz (Supervisor)
    Abstract
    In this thesis, heterogeneous magnetic catalysts immobilize have been designed and synthesized in a triazine polymer support. Triazine polymeric support increases the amount of nitrogen due to their high levels of nitrogen, which in turn reduces the amount of catalyst consumed and reduces metal waste and increases catalyst activate. Melamine and TCT from the triazine family are used because of the ability to form hydrogen bonds, chelate with metals, and the interaction of π-π as an appropriate ligand for stabilizing metals on substrates. In this thesis, various nitrogen-rich polymers based on triazines in the presence of magnetic nanoparticles coated with silica and their compositions with... 

    Investigation of Operating Parameters for Thorium Adsorption from Wastewater by Using of Radiated Grafting Polymeric Adsorbents in Packed Bed Column

    , M.Sc. Thesis Sharif University of Technology Kazzazi, Sina (Author) ; Outokesh, Mohamad (Supervisor) ; Torab Mostaedi, Meysam (Supervisor) ; Asadollahzadeh, Mehdi (Co-Supervisor) ; Torkaman, Rezvan (Co-Supervisor)
    Abstract
    Today, the pollution of heavy metals in wastewater and surface waters, which is a global environmental problem, has increased with the expansion of various industrial activities. Heavy metals cause serious health problems due to their accumulation in human and animal tissues. Thorium, is a radioactive element with an atomic number of 90 that is widely used in the optics, aerospace, metallurgy and chemical industries, in the manufacture of high-strength alloys, in UV photocells, and especially in the nuclear industry. The primary sources of radioactive wastewater include nuclear power plants, nuclear energy industry research centers, medical institutions, industrial production, universities,... 

    Using FSP Method to Create Composite and Surface Foam with Distribution Gradient of Particles and Porosity as FGM and Study of Physical and Mechanical Properties

    , M.Sc. Thesis Sharif University of Technology Karimi, Mahdi (Author) ; Akbarzadeh, Abbas (Supervisor)
    Abstract
    Nowadays, the tendency to use Al/SiC composites with FGM structure has increased in the automotive and aerospace industries, because in this type of composite, the properties can be gradually changed in the direction of thickness. For example, one composite surface is used as a wear-resistant or high-temperature-resistant coating, and the other surface can be welded, has high thermal conductivity, or has a good toughness. In recent years, methods have been used to make surface composites, most of which are in the molten state and at high temperatures. In this case, the reactions between the compounds can not be easily controlled and the possibility of the formation of undesirable or... 

    The Growth and Characterization of Two-Dimensional Molybdenum Diselenide Crystals as Photodetectors

    , M.Sc. Thesis Sharif University of Technology Karimi, Fatemeh (Author) ; Esfandiar, Ali (Supervisor)
    Abstract
    A novel optoelectronic property of two-dimensional (2D) materials suggests they can be used for high-performance photodetector design. There has been a lot of attention paid to MoS2 and Despite its higher optical absorbance, MoSe2 has received little attention. A chemical vapor deposition system was used to prepare atomically thin MoSe2 films. Our research developed a method of preparing hexagon-shaped MoSe2 photodetector on Si/SiO2 substrates in atmospheric pressure with sawtooth edges, leading to large-scale MoSe2 layers with the size of ∼ 70µm . The Raman characterization of the grown flakes indicated that they possessed high quality few layers of MoSe2 and the distance between the two... 

    Fabrication and Evaluation of Catalytic Microreactors to Verify the Conversion of Ethyl Mercaptan

    , M.Sc. Thesis Sharif University of Technology Karami Basiri, Mohammad (Author) ; Kazemeini, Mohammad (Supervisor)
    Abstract
    Sulfur compounds are largely an impurity in fossil fuels such as natural gas, crude oil and coal. In natural gas, the main sulfur compounds are hydrogen sulfide (H2S), carbonyl sulfide (COS),and C1-C3 mercaptans.Commercial methods for removing these compounds require the introduction of additional reactive substances (O2, H2, Olefins, NaOH, etc.), which often results in the production of other pollutants. Microfluid is a branch of science and technology that involves studying the behavior of fluid, the use of fluid and the manufacture of equipment or systems that are carried out in micro-channels.The dimensions of these canals are about ten to several hundred micrometers, and high of... 

    Investigation of Sulfate Reducing Bacteria for Treatment of Wastewaters Polluted by Heavy Metals

    , M.Sc. Thesis Sharif University of Technology Kakavand, Nargess (Author) ; Kariminia Hamedani, Hamid Reza (Supervisor) ; Borghei, Mehdi (Supervisor)
    Abstract
    The main objective of this research was to evaluate the application of a new strain of Brevundimonas naejangsanensis which is newly identified sulfate-reducing bacteria (SRB), in chromium(VI) removal in contaminated wastewater. A laboratory scale packed bed reactor (PBR) was fabricated and operated to study the bacteria’s feasibility on chromium(VI) reduction and removal. The reactor was packed with polyurethane foam cubes and operated under different feeding and operating conditions of HRT, COD/〖SO〗_4^(2-) ratio and influent chromium(VI) concentration. A maximum chromium removal of 94.6% was achieved in the PBR when operated at an HRT of 24 h with COD/〖SO〗_4^(2-) ratio of .70 and influent... 

    Repairing of Damaged Metallic Pressure Pipe Using Polymer-Based Composites

    , M.Sc. Thesis Sharif University of Technology Kaveh Pisheh, Mahsa (Author) ; Abedian, Ali (Supervisor)
    Abstract
    Due to well mechanical properties and high resistance to environmental conditions, metal pipes are used to transport oil and gas products, water and sewage, as well as hydraulic systems in aircraft or aerospace systems. Therefore, maintenance of oil and gas transmission lines in energy-related industries and pressurized tanks in the aviation industry has always been a concern of engineers. Due to the problems of old methods for repairing damaged pipelines or aerial structures, it seems necessary to provide new, safe and cheap methods for repairing them. Various engineering standards for pipelines and their repairs have been presented so far which have analytical solutions to determine the...