Loading...
Search for: metasurface
0.007 seconds
Total 37 records

    Fractal metamaterial based multiband absorber operating in 5G regime

    , Article Optik ; Volume 266 , 2022 ; 00304026 (ISSN) Baqir, M. A ; Latif, H ; Altintas, O ; Akhtar, M. N ; Karaaslan, M ; Server, H ; Hameed, M ; Idrees, N. M ; Sharif University of Technology
    Elsevier GmbH  2022
    Abstract
    Multiband absorption is the interest of the microwave communities due to several applications in sensing, filtering, and stealth. Usually, the stacking of metal and dielectric multilayered structures form a multiband absorber which makes the device bulky and costly. In this paper, we investigate a multiband absorber based on a single-layered fractal metasurface for the 5G applications. The unit cell of the fractal metasurface is comprised of six ring-shaped symmetric split-ring resonators (SRRs) connected back-to-back with each other. The absorptivity is investigated in the 5G microwave regime (22–36 GHz) for various obliquities at different substrate thicknesses. Simulation results show... 

    Generalized equivalent circuit model for analysis of graphene/metal-based plasmonic metasurfaces using Floquet expansion

    , Article Optics Express ; Volume 30, Issue 20 , 2022 , Pages 35486-35499 ; 10944087 (ISSN) Pasdari Kia, M ; Memarian, M ; Khavasi, A ; Sharif University of Technology
    Optica Publishing Group (formerly OSA)  2022
    Abstract
    Due to the wide range of applications of metal/graphene-based plasmonic metasurfaces (sensors, absorbers, polarizers), it has become essential to provide an analytical method for modeling these structures. An analytical solution simplified into a circuit model, in addition to greatly reducing the simulation time, can become an essential tool for designing and predicting the behaviors of these structures. This paper presents a high-precision equivalent circuit model to study these structures in one-dimensional and two-dimensional periodic arrays. In the developed model, metallic patches similar to graphene patches are modeled as surface conductivity and with the help of current modes induced... 

    Computational inverse design for cascaded systems of metasurface optics: comment

    , Article Optics Express ; Volume 30, Issue 20 , 2022 , Pages 36966-37005 ; 10944087 (ISSN) Zarei, S ; Khavasi, A ; Sharif University of Technology
    Optica Publishing Group (formerly OSA)  2022
    Abstract
    In a recently published article by Backer [Opt. Express 27(21), 30308 (2019).], a computational inverse design method is developed for designing optical systems composed of multiple metasurfaces. The forward propagation model used in this method was a discretized version of the angular spectrum propagator described by Goodman [Introduction to Fourier Optics, 1996]. However, slight modifications are necessary to increase the accuracy of this inverse design method. This comment examines the accuracy of the results obtained by the above-mentioned method by a full-wave electromagnetic solver and explains the reason of their difference. Thereafter, slight modifications to the method proposed by... 

    Frequency conversion in time-varying graphene microribbon arrays

    , Article Optics Express ; Volume 30, Issue 18 , 2022 , Pages 32061-32073 ; 10944087 (ISSN) Salehi, M ; Rahmatian, P ; Memarian, M ; Mehrany, K ; Sharif University of Technology
    Optica Publishing Group (formerly OSA)  2022
    Abstract
    We investigate the possibility of frequency conversion in time-varying metasurfaces, composed of graphene microribbon arrays (GMRAs) with time-periodic modulation of their conductivity. We present a quasi-static model for the interaction of light with a temporally modulated metasurface, as well as an accurate analytical treatment of the problem of time-varying GMRAs. Results coming from numerical simulations are also available. We provide corrections to a previous related proposal for frequency conversion and refute the possibility of attaining frequency shifts not equal to an integral multiple of modulation frequency. Contrary to the preceding results, our findings show that efficient... 

    Effects of resonator geometry and substrate stiffness on the tunability of a deformable microwave metasurface

    , Article AEU - International Journal of Electronics and Communications ; Volume 146 , 2022 ; 14348411 (ISSN) Karimi Mahabadi, R ; Goudarzi, T ; Fleury, R ; Sohrabpour, S ; Naghdabadi, R ; Sharif University of Technology
    Elsevier GmbH  2022
    Abstract
    Tunable metasurfaces can shift their resonant frequency through different approaches, one of which is applying mechanical deformations. Here, we show the effects of two key factors on the tunability of deformable metasurfaces; the resonator geometry and substrate stiffness. To show the effects, we compared the tunability of unit cells with three resonator geometries and three common substrates at microwave frequencies from 1 GHz to 10 GHz under a given mechanical deformation. We showed that the resonator geometry affects the deformation field, as a consequence, causes different resonant frequency shifts. Moreover, it affects the stress field in the metasurface which in turn limits the... 

    From asymmetrical transmitter to the nonreciprocal isolator using time-varying metasurfaces

    , Article Optical and Quantum Electronics ; Volume 54, Issue 5 , 2022 ; 03068919 (ISSN) Khorrami, Y ; Fathi, D ; Khavasi, A ; Rumpf, R. C ; Sharif University of Technology
    Springer  2022
    Abstract
    We present an emulation design method for converting asymmetrical transmitters to nonreciprocal isolators equipped with time-varying metasurfaces. To illustrate the model, we design a structure using a combination of the photonic crystal (PhC) and time-varying metasurface. Moreover, we propose a general approach for numerical analysis of the time-modulated proposed structure using the extension of the transfer matrix method (TMM) which consists of working through the device one layer at a time and calculating an overall transfer matrix including the time-variation of the permittivity and permeability in each layer. Also, we use an optimization algorithm that is less used in the field of... 

    Polarization insensitive, wide angle and wideband anisotropic metamaterial absorber comprising phase change Ge2Sb2Te5 (GST)/SiO2 layered media

    , Article Waves in Random and Complex Media ; 2022 ; 17455030 (ISSN) Baqir, M.A ; Abdulrazak, L. F ; Akhtar, M. N ; Sharif University of Technology
    Taylor and Francis Ltd  2022
    Abstract
    Perfect metamaterial absorbers (PMAs) are crucial for sensing, energy harvesting, cloaking, and solar cell, as these can perfectly absorb electromagnetic waves in the broad range of electromagnetic spectra. Due to these remarkable applications, PMAs have extensively attracted the attention of numerous researchers. However, to date, narrow- and wide-band absorbers have been investigated, recently wideband absorption is the primary concern of electromagnetic communities. In this paper, absorption features of the metasurface-based absorber are analyzed. The PMA is made of three layers–a top metasurface fabricated over silicon dioxide (SiO2) with a backside coated with a thin layer of silver... 

    ZrN fractal-graphene-based metamaterial absorber in the visible and near-IR regimes

    , Article Optik ; Volume 237 , 2021 ; 00304026 (ISSN) Baqir, M. A ; Choudhury, P. K ; Niaz Akhtar, M ; Sharif University of Technology
    Elsevier GmbH  2021
    Abstract
    The absorption characteristics of zirconium nitride (ZrN)-based metamaterial absorber of fractal geometry are studied. The proposed absorber is comprised of fractal metasurface at the top having subwavelength-sized periodic pattern of specially designed ZrN circular nano-discs arranged over silicon dioxide (SiO2) substrate. A tri-layer graphene, owing to its exhibiting better tunability, is introduced at the interface of metasurface and substrate. The bottom side of SiO2 is coated with silver nanolayer to block transmission. The absorptivity essentially depends on the kind of fractal design used in metasurface to configure the absorber. The obtained results exhibit the absorption... 

    Multifunctional hyperelastic structured surface for tunable and switchable transparency

    , Article Applied Sciences (Switzerland) ; Volume 11, Issue 5 , 2021 , Pages 1-11 ; 20763417 (ISSN) Mahabadi, R. K ; Goudarzi, T ; Fleury, R ; Naghdabadi, R ; Sharif University of Technology
    MDPI AG  2021
    Abstract
    We leverage the crucial hyperelastic properties of a multifunctional structured surface to optimize the reconfigurability of the electromagnetic transmission under large nonlinear mechanical deformations. This multiphysics, multifunctional, hyperelastic structured surface (HSS) offers two simultaneous intriguing functionalities; tunability and switchability. It is made of copper reso-nators and a Polydimethylsiloxane (PDMS) substrate, which is one of the most favorable deformable substrates due to its hyperelastic behavior. The proposed HSS is fabricated via an original cost-effective technique and the multiphysics functionalities are captured in both experimental tests and numerical... 

    Phase-only femtosecond optical pulse shaping based on an all-dielectric polarization-insensitive metasurface

    , Article Optics Express ; Volume 29, Issue 22 , 2021 , Pages 36900-36914 ; 10944087 (ISSN) Abbaszadeh, A ; Tehranian, A ; Salehi, J. A ; Sharif University of Technology
    The Optical Society  2021
    Abstract
    Recently, metasurfaces capable of manipulating the amplitude and the phase of an incident wave in a broad frequency band have been employed for femtosecond optical pulse shaping purposes. In this study, we introduce a phase-only pulse shaper based on an all-dielectric CMOS-compatible polarization-insensitive metasurface, composed of Si nano cylinders sitting on a fused silica substrate. The required phase profile of the metasurface for desired waveforms are calculated using an iterative Fourier transform algorithm, and the performance of the pulse shaper metasurface in implementing the phase masks was assessed using full-wave simulations. Such approach for realizing a... 

    Phase-only femtosecond optical pulse shaping based on an all-dielectric polarization-insensitive metasurface

    , Article Optics Express ; Volume 29, Issue 22 , 2021 , Pages 36900-36914 ; 10944087 (ISSN) Abbaszadeh, A ; Tehranian, A ; Salehi, J. A ; Sharif University of Technology
    The Optical Society  2021
    Abstract
    Recently, metasurfaces capable of manipulating the amplitude and the phase of an incident wave in a broad frequency band have been employed for femtosecond optical pulse shaping purposes. In this study, we introduce a phase-only pulse shaper based on an all-dielectric CMOS-compatible polarization-insensitive metasurface, composed of Si nano cylinders sitting on a fused silica substrate. The required phase profile of the metasurface for desired waveforms are calculated using an iterative Fourier transform algorithm, and the performance of the pulse shaper metasurface in implementing the phase masks was assessed using full-wave simulations. Such approach for realizing a... 

    A compact polarization insensitive all-dielectric metasurface lens for Gaussian to tophat beam shaping in sub-terahertz regime

    , Article Optics Communications ; Volume 462 , 2020 Abbaszadeh, A ; Ahmadi Boroujeni, M ; Tehranian, A ; Sharif University of Technology
    Elsevier B.V  2020
    Abstract
    In this paper, we present a Gaussian to tophat beam shaper (GTBS) based on an all-dielectric metasurface lens for sub terahertz (sub-THz) applications. In order to calculate the required phase profile of the GTBS, we use an analytical procedure based on the geometrical transformation technique. The calculated phase profile is then realized by a silicon (Si) metasurface lens consisting of rectangular-shaped pillars of subwavelength dimensions. Because of large solution domain relative to the operation wavelength, we combined the beam envelope and the finite element methods to simulate the structure with a high precision. By designing an anti-reflection metasurface made up of periodically... 

    Beam manipulation by hybrid plasmonic-dielectric metasurfaces

    , Article Plasmonics ; Volume 15, Issue 3 , 2020 , Pages 639-645 Arik, K ; Hemmatyar, O ; Kavehvash, Z ; Sharif University of Technology
    Springer  2020
    Abstract
    A hybrid plasmonic-dielectric metasurface is proposed in order to manipulate beam propagation in desired manners. The metasurface is composed of patterned hybrid graphene-silicon nano-disks deposited on a low-index substrate, namely silica. It is shown that the proposed hybrid metasurface simultaneously benefits from the advantages of graphene-based metasurfaces and dielectric ones. Specially, we show that the proposed hybrid metasurface not only provides reconfigurability, just like previously proposed graphene-based metasurfaces, but also similar to dielectric metasurfaces, is of low loss and CMOS-compatible. Such exceptional features give the metasurface exceptional potentials to realize... 

    Tunable circular conversion dichroism and asymmetric transmission of terahertz graphene metasurface composed of split rings

    , Article Optics Communications ; Volume 456 , 2020 Asgari, S ; Rahmanzadeh, M ; Sharif University of Technology
    Elsevier B.V  2020
    Abstract
    The asymmetric transmission (AT) has attracted wide attention due to its novel applications. In this paper, we propose and investigate a tunable polarization-dependent intrinsically chiral graphene metasurface composed of split ring arrays in terahertz (THz) region. The resonance frequency of the structure is sensitive to the graphene chemical potential. Circular conversion dichroism (CCD) of the proposed structure is tunable and is reached to 0.36. Our work paths a new approach to propose some other compact and on-chip polarization-dependent structures in THz region. Furthermore, our proposed structure could be a useful segment in polarization-dependent systems. © 2019 Elsevier B.V  

    Planar resonant blazed gratings from a circuit model standpoint

    , Article IEEE Transactions on Antennas and Propagation ; Volume 68, Issue 4 , 4 April , 2020 , Pages 2765-2778 Molero, C ; Rodriguez Berral, R ; Mesa, F ; Medina, F ; Memarian, M ; Itoh, T ; Sharif University of Technology
    Institute of Electrical and Electronics Engineers Inc  2020
    Abstract
    The equivalent circuit approach (ECA) is used in this work to analyze and design a previously proposed one-dimensional planar blazed grating of the resonant type. The analysis covers both the classical Littrow configuration, when the direction of the relevant diffracted order coincides with that of the incident wave (Bragg blazing), and when these directions are different (off-Bragg blazing). Once the scattering problem of the grating structure is posed as a discontinuity problem inside an equivalent generalized waveguide (corresponding to the unit cell of the original structure) and studied in terms of its equivalent circuit network, the possibility of transferring all the power of the... 

    Terahertz quarter wave-plate metasurface polarizer based on arrays of graphene ribbons

    , Article IEEE Photonics Technology Letters ; Volume 31, Issue 12 , 2019 , Pages 931-934 ; 10411135 (ISSN) Tavakol, M. R ; Rahmani, B ; Khavasi, A ; Sharif University of Technology
    Institute of Electrical and Electronics Engineers Inc  2019
    Abstract
    We propose a novel graphene-dielectric-based metasurface for manipulating the polarization of the incident light in the terahertz regime. The proposed structure comprised two orthogonally oriented periodic array of graphene ribbons (PAGRs) which are separated by a dielectric spacer and deposited on an Au-backed dielectric substrate. Based on the transmission line theory, an equivalent model with excellent accuracy is suggested for the proposed structure. By leveraging the simplicity of the model, we design a three-state quarter wave plate that is able to dynamically switch the polarization of the reflected wave to linear, right-, and left-hand polarizations while keeping the reflected... 

    Recent advances in spatial analog optical computing

    , Article 5th International Conference on Millimeter-Wave and Terahertz Technologies, MMWaTT 2018, 18 December 2018 through 20 December 2018 ; Volume 2018-December , 2019 , Pages 6-11 ; 21570965 (ISSN); 9781538677179 (ISBN) Pour Mohammad Qoli Vafa, A ; Karimi, P ; Khavasi, A ; Sharif University of Technology
    Institute of Electrical and Electronics Engineers Inc  2019
    Abstract
    Traditional analog computers that perform mathematical operations electronically or mechanically suffer from their relatively large size and slow response. Recently, the idea of spatial analog optical computing has overcome these restrictions. The different techniques to implement spatial analog optical computation can be categorized into two fundamental approaches: (I) metasurface (MS) approach and (II) Green's function (GF) approach. In the first approach, a metasurface is designed to implement the Green's function of the desired operator in the spatial domain. This means that this approach needs two sub-blocks to perform Fourier and inverse Fourier transform. On the other hand, in the... 

    Beam manipulation by hybrid plasmonic-dielectric metasurfaces

    , Article Plasmonics ; 2019 ; 15571955 (ISSN) Arik, K ; Hemmatyar, O ; Kavehvash, Z ; Sharif University of Technology
    Springer  2019
    Abstract
    A hybrid plasmonic-dielectric metasurface is proposed in order to manipulate beam propagation in desired manners. The metasurface is composed of patterned hybrid graphene-silicon nano-disks deposited on a low-index substrate, namely silica. It is shown that the proposed hybrid metasurface simultaneously benefits from the advantages of graphene-based metasurfaces and dielectric ones. Specially, we show that the proposed hybrid metasurface not only provides reconfigurability, just like previously proposed graphene-based metasurfaces, but also similar to dielectric metasurfaces, is of low loss and CMOS-compatible. Such exceptional features give the metasurface exceptional potentials to realize... 

    Tunable polarization converter based on one-dimensional graphene metasurfaces

    , Article Journal of the Optical Society of America B: Optical Physics ; Volume 35, Issue 10 , 2018 , Pages 2574-2581 ; 07403224 (ISSN) Tavakol, M. R ; Rahmani, B ; Khavasi, A ; Sharif University of Technology
    OSA - The Optical Society  2018
    Abstract
    We introduce a new metasurface structure for controlling the polarization of light by leveraging a wellharmonized combination of graphene and dielectric. The proposed metasurface is composed of an array of rectangular pillars laterally sandwiched by ribbons of graphene. Being able to dynamically change the polarization state of the reflected wave, the proposed structure is employed to realize a switchable polarization converter, which is able to act as a reflector (co-polarizer)/right-hand circular (RHC) quarter-wave plate or RHC/cross/ left-hand circular (LHC) polarizer based on its design configuration. The reflected amplitude in all states of functionality is remarkably high. It is also... 

    A New cavity resonance assisted by anisotropic metasurfaces

    , Article IEEE Transactions on Microwave Theory and Techniques ; Volume 66, Issue 7 , 2018 , Pages 3224-3233 ; 00189480 (ISSN) Li, X ; Memarian, M ; Itoh, T ; Sharif University of Technology
    Institute of Electrical and Electronics Engineers Inc  2018
    Abstract
    A new resonance phenomenon is demonstrated in waveguide cavities, which simultaneously uses two orthogonal modes (polarizations). This resonance is formed by bouncing waves with similar handedness, between two simple anisotropic metasurfaces having a relative rotation angle. The rotated anisotropic metasurfaces can cross couple the waves from one polarization to the other at the cavity end. The field profile of the resonant mode does not exhibit nodes and antinodes, thus the resonant frequency is not solely determined by the cavity length, unlike common resonators. The resonance condition is theoretically demonstrated from both field and transmission line perspectives, and is validated by...