Loading...
Search for: micro-fluidic-devices
0.006 seconds
Total 38 records

    Parametric study of droplet formation and characteristics within microfluidic devices - A case study

    , Article International Journal of Applied Mechanics ; Volume 12, Issue 7 , 2020 Salehi, S. S ; Shamloo, A ; Kazemzadeh Hannani, S ; Sharif University of Technology
    World Scientific  2020
    Abstract
    Droplet-based microfluidics technologies hold great attention in a wide range of applications, including chemical analysis, drug screening, and food industries. This work aimed to describe the effects of different physical properties of the two immiscible phases on droplet formation in a flow-focusing microfluidic device and determining proper flow rates to form a droplet within the desired size range. A numerical model was developed to solve the governing equations of two-phase flow and the results were validated with previous experimental results. The results demonstrate different types of droplet formation regimes from dripping to jetting and different production rates of droplets as a... 

    Computational study of geometric effects of bottom wall microgrooves on cell docking inside microfluidic devices

    , Article Journal of Mechanics in Medicine and Biology ; Volume 21, Issue 2 , 2021 ; 02195194 (ISSN) Ahandoust, S ; Saadatmand, M ; Sharif University of Technology
    World Scientific  2021
    Abstract
    Cells docking inside microfluidic devices is effective in studying cell biology, cell-based biosensing, as well as drug screening. Furthermore, single cell and regularly cells docking inside the microstructure of microfluidic systems are advantageous in different analyses of single cells exposed to equal drug concentration and mechanical stimulus. In this study, we investigated bottom wall microgrooves with semicircular and rectangular geometries with different sizes which are suitable for single cell docking along the length of the microgroove in x-direction and numerous cells docking regularly in one line inside the microgroove in a 3D microchannel. We used computational fluid dynamics to... 

    Computational study of geometric effects of bottom wall microgrooves on cell docking inside microfluidic devices

    , Article Journal of Mechanics in Medicine and Biology ; Volume 21, Issue 2 , 2021 ; 02195194 (ISSN) Ahandoust, S ; Saadatmand, M ; Sharif University of Technology
    World Scientific  2021
    Abstract
    Cells docking inside microfluidic devices is effective in studying cell biology, cell-based biosensing, as well as drug screening. Furthermore, single cell and regularly cells docking inside the microstructure of microfluidic systems are advantageous in different analyses of single cells exposed to equal drug concentration and mechanical stimulus. In this study, we investigated bottom wall microgrooves with semicircular and rectangular geometries with different sizes which are suitable for single cell docking along the length of the microgroove in x-direction and numerous cells docking regularly in one line inside the microgroove in a 3D microchannel. We used computational fluid dynamics to... 

    Microfluidics-Enabled multimaterial maskless stereolithographic bioprinting

    , Article Advanced Materials ; Volume 30, Issue 27 , 2018 ; 09359648 (ISSN) Miri, A. K ; Nieto, D ; Iglesias, L ; Goodarzi Hosseinabadi, H ; Maharjan, S ; Ruiz Esparza, G. U ; Khoshakhlagh, P ; Manbachi, A ; Dokmeci, M. R ; Chen, S ; Shin, S. R ; Zhang, Y. S ; Khademhosseini, A ; Sharif University of Technology
    Wiley-VCH Verlag  2018
    Abstract
    A stereolithography-based bioprinting platform for multimaterial fabrication of heterogeneous hydrogel constructs is presented. Dynamic patterning by a digital micromirror device, synchronized by a moving stage and a microfluidic device containing four on/off pneumatic valves, is used to create 3D constructs. The novel microfluidic device is capable of fast switching between different (cell-loaded) hydrogel bioinks, to achieve layer-by-layer multimaterial bioprinting. Compared to conventional stereolithography-based bioprinters, the system provides the unique advantage of multimaterial fabrication capability at high spatial resolution. To demonstrate the multimaterial capacity of this... 

    Toward higher extraction and enrichment factors via a double-reservoirs microfluidic device as a micro-extractive platform

    , Article Journal of Separation Science ; Volume 42, Issue 18 , 2019 , Pages 2985-2992 ; 16159306 (ISSN) Rezvani, O ; Baraazandeh, M ; Bagheri, H ; Sharif University of Technology
    Wiley-VCH Verlag  2019
    Abstract
    In this study, firstly, a double-reservoir and switchable prototype of a micro-chip along with the respective holders were fabricated. A cyclic desorption process using microliter volume of organic solvent was adopted to prevent any outdoor contamination. As extractive phases, two identical sheets of electrospun polyamide/polypyrrole/titania nanofibers were synthesized using core–shell electro-spinning technique and utilized for determination of memantine in plasma samples. Field emission scanning electron microscopy images showed a high degree of porosity and homogeneity throughout the sheet structure. Also, energy dispersive X-ray analysis confirmed the presence of titania, while the... 

    Investigation of a two-step device implementing magnetophoresis and dielectrophoresis for separation of circulating tumor cells from blood cells

    , Article Engineering in Life Sciences ; Volume 20, Issue 7 , 2020 , Pages 296-304 Shamloo, A ; Yazdani, A ; Saghafifar, F ; Sharif University of Technology
    Wiley-VCH Verlag  2020
    Abstract
    Identifying tumor cells from a pool of other cells has always been an appealing topic for different purposes. The objective of this study is to discriminate circulating tumor cells (CTCs) from blood cells for diagnostic purposes in a novel microfluidic device using two active methods: magnetophoresis and dielectrophoresis. The most specific feature of this device is the differentiation of CTCs without labeling them in order to achieve a more reliable and less complicated method. This device was analyzed and evaluated using finite element method. Four cell lines are separated in this device containing red blood cells, platelets, white blood cells, and CTCs. Primarily, red blood cells and... 

    High throughput blood plasma separation using a passive PMMA microfluidic device

    , Article Microsystem Technologies ; 2015 ; 09467076 (ISSN) Shamsi, A ; Shamloo, A ; Mohammadaliha, N ; Hajghassem, H ; Mehrabadi, J. F ; Bazzaz, M ; Sharif University of Technology
    Springer Verlag  2015
    Abstract
    Since plasma is rich in many biomarkers used in clinical diagnostic experiments, microscale blood plasma separation is a primitive step in most of microfluidic analytical chips. In this paper, a passive microfluidic device for on-chip blood plasma separation based on Zweifach–Fung effect and plasma skimming was designed and fabricated by hot embossing of microchannels on a PMMA substrate and thermal bonding process. Human blood was diluted in various times and injected into the device. The main novelty of the proposed microfluidic device is the design of diffuser-shaped daughter channels. Our results demonstrated that this design exerted a considerable positive influence on the separation... 

    High throughput blood plasma separation using a passive PMMA microfluidic device

    , Article Microsystem Technologies ; Volume 22, Issue 10 , 2016 , Pages 2447-2454 ; 09467076 (ISSN) Shamsi, A ; Shamloo, A ; Mohammadaliha, N ; Hajghassem, H ; Fallah Mehrabadi, J ; Bazzaz, M ; Sharif University of Technology
    Springer Verlag  2016
    Abstract
    Since plasma is rich in many biomarkers used in clinical diagnostic experiments, microscale blood plasma separation is a primitive step in most of microfluidic analytical chips. In this paper, a passive microfluidic device for on-chip blood plasma separation based on Zweifach–Fung effect and plasma skimming was designed and fabricated by hot embossing of microchannels on a PMMA substrate and thermal bonding process. Human blood was diluted in various times and injected into the device. The main novelty of the proposed microfluidic device is the design of diffuser-shaped daughter channels. Our results demonstrated that this design exerted a considerable positive influence on the separation... 

    Electrokinetic and aspect ratio effects on secondary flow of viscoelastic fluids in rectangular microchannels

    , Article Microfluidics and Nanofluidics ; Volume 20, Issue 8 , 2016 ; 16134982 (ISSN) Reshadi, M ; Saidi, M. H ; Firoozabadi, B ; Saidi, M. S ; Sharif University of Technology
    Springer Verlag  2016
    Abstract
    The secondary flow of PTT fluids in rectangular cross-sectional plane of microchannels under combined effects of electroosmotic and pressure driving forces is the subject of the present study. Employing second-order central finite difference method in a very refined grid network, we investigate the effect of electrokinetic and geometric parameters on the pattern, strength and the average of the secondary flow. In this regard, we try to illustrate the deformations of recirculating vortices due to change in the dimensionless Debye–Hückel and zeta potential parameters as well as channel aspect ratio. We demonstrate that, in the presence of thick electric double layers, significant alteration... 

    Modeling, simulation, and employing dilution–dialysis microfluidic chip (DDMC) for heightening proteins refolding efficiency

    , Article Bioprocess and Biosystems Engineering ; Volume 41, Issue 5 , 2018 , Pages 707-714 ; 16157591 (ISSN) Kashanian, F ; Masoudi, M. M ; Shamloo, A ; Habibi Rezaei, M ; Moosavi Movahedi, A. A ; Sharif University of Technology
    Springer Verlag  2018
    Abstract
    Miniaturized systems based on the principles of microfluidics are widely used in various fields, such as biochemical and biomedical applications. Systematic design processes are demanded the proper use of these microfluidic devices based on mathematical simulations. Aggregated proteins (e.g., inclusion bodies) in solution with chaotropic agents (such as urea) at high concentration in combination with reducing agents are denatured. Refolding methods to achieve the native proteins from inclusion bodies of recombinant protein relying on denaturant dilution or dialysis approaches for suppressing protein aggregation is very important in the industrial field. In this paper, a modeling approach is... 

    Dielectrophoretic interaction of two particles in a uniform electric field

    , Article Microsystem Technologies ; Volume 25, Issue 7 , 2019 , Pages 2699-2711 ; 09467076 (ISSN) Javidi, R ; Moghimi Zand, M ; Dastani, K ; Sharif University of Technology
    Springer Verlag  2019
    Abstract
    The local electric field distorsion induced by a dielectric particle leads to particle–particle interactions and assembly which is very interesting for their useful applications on microfluidic devices. Particles behavior becomes more complicated if several particles interact at the same time. This paper presents a comprehensive numerical analysis of the assembly and particle–particle interactions for two similar and dissimilar dielectric particles immersed in a dielectric fluid using the immersed interface method based on two-dimensional direct-current dielectrophoresis. The immersed interface method is a finite-difference (or finite element) based numerical method which its key advantage... 

    Efficient batch-mode mixing and flow patterns in a microfluidic centrifugal platform: a numerical and experimental study

    , Article Microsystem Technologies ; 2016 , Pages 1-13 ; 09467076 (ISSN) Mortazavi, S. M. A ; Tirandazi, P ; Normandie, M ; Saidi, M. S ; Sharif University of Technology
    Springer Verlag 
    Abstract
    During recent years centrifugal-based microfluidic devices known as Lab-on-a-CD have attracted a lot of attentions. Applications of these CD-based platforms are ubiquitous in numerous biological analyses and chemical syntheses. Mixing of different species in microscale is one of the essential operations in biochemical applications where this seemingly simple task remains a major obstruction. Application of centrifugal force, however, may significantly improve the flow agitation and mixing, especially when it is combined with the Coriolis force which acts perpendicular to centrifugal force. In this study, mixing process in minichambers located on a rotating platform under a periodic... 

    Shear-thinning droplet formation inside a microfluidic T-junction under an electric field

    , Article Acta Mechanica ; Volume 232, Issue 7 , 2021 , Pages 2535-2554 ; 00015970 (ISSN) Amiri, N ; Honarmand, M ; Dizani, M ; Moosavi, A ; Kazemzadeh Hannani, S ; Sharif University of Technology
    Springer  2021
    Abstract
    Researchers usually simplify their simulations by considering the Newtonian fluid assumption in microfluidic devices. However, it is essential to study the behavior of real non-Newtonian fluids in such systems. Moreover, using the external electric or magnetic fields in these systems can be very beneficial for manipulating the droplet size. This study considers the simulation of the process of non-Newtonian droplets’ formation under the influence of an external electric field. The novelty of this study is the use of a shear-thinning fluid as the droplet phase in this process, which has been less studied despite its numerous applications. The effects of an external electric field on this... 

    Design of a hybrid inertial and magnetophoretic microfluidic device for ctcs separation from blood

    , Article Micromachines ; Volume 12, Issue 8 , 2021 ; 2072666X (ISSN) Nasiri, R ; Shamloo, A ; Akbari, J ; Sharif University of Technology
    MDPI AG  2021
    Abstract
    Circulating tumor cells (CTCs) isolation from a blood sample plays an important role in cancer diagnosis and treatment. Microfluidics offers a great potential for cancer cell separation from the blood. Among the microfluidic-based methods for CTC separation, the inertial method as a passive method and magnetic method as an active method are two efficient well-established methods. Here, we investigated the combination of these two methods to separate CTCs from a blood sample in a single chip. Firstly, numerical simulations were performed to analyze the fluid flow within the proposed channel, and the particle trajectories within the inertial cell separation unit were investigated to... 

    A microfluidic device for 2D to 3D and 3D to 3D cell navigation

    , Article Journal of Micromechanics and Microengineering ; Volume 26, Issue 1 , November , 2015 ; 09601317 (ISSN) Shamloo, A ; Amirifar, L ; Sharif University of Technology
    Institute of Physics Publishing  2015
    Abstract
    Microfluidic devices have received wide attention and shown great potential in the field of tissue engineering and regenerative medicine. Investigating cell response to various stimulations is much more accurate and comprehensive with the aid of microfluidic devices. In this study, we introduced a microfluidic device by which the matrix density as a mechanical property and the concentration profile of a biochemical factor as a chemical property could be altered. Our microfluidic device has a cell tank and a cell culture chamber to mimic both 2D to 3D and 3D to 3D migration of three types of cells. Fluid shear stress is negligible on the cells and a stable concentration gradient can be... 

    The effects of thymus plant extracts on single breast cancer cell morphology in the microfluidic channel

    , Article 2018 IEEE EMBS Conference on Biomedical Engineering and Sciences, IECBES 2018, 3 December 2018 through 6 December 2018 ; 2019 , Pages 647-651 ; 9781538624715 (ISBN) Ahmad, M. R ; Mansor, M. A ; Alsadat Rad, M ; Soo-Beng Khoo, A ; Ahmad, M ; Marzuki, M ; Physiological Measurement; Sarawak Convention Bureau ; Sharif University of Technology
    Institute of Electrical and Electronics Engineers Inc  2019
    Abstract
    Microfluidics based systems could be useful for drug discovery as they allow for miniaturization and could potentially be run as multiple parallel cell based assays. Such miniaturization allows assays at single cell level and reduces the amount of test material needed, which, in the case of natural product extracts, simplifies the preparation. Thyme species extracts have been reported to show some promising anti-cancer effects. In the present work, we used a microfluidics based system to study the effects of Thymus kotschyanusm Boiss plant extract on two human breast cancer cells lines which are MDA-MB-231 and MCF-7. For better understanding a single cancer cell death mechanism and a flow... 

    Simulation of blood particle separation in a trapezoidal microfluidic device by acoustic force

    , Article IEEE Transactions on Electron Devices ; Volume 66, Issue 3 , 2019 , Pages 1495-1503 ; 00189383 (ISSN) Shamloo, A ; Yazdan Parast, F ; Sharif University of Technology
    Institute of Electrical and Electronics Engineers Inc  2019
    Abstract
    Nowadays, the importance of the blood particles separation is undeniable in medical fields and there are different sorts of separation methods accordingly. Acoustic cell separation is chosen in this paper. Also, numerical methods have been used to study the effect of geometrical factors on the separation of the particles before spending time and expenses in a trial and error manner experimentally. We have implemented a plenary finite-element-based simulation of separatingblood particles such as white blood cells and platelets in an acoustic field using standing surface acoustic waves. In this paper, unlike previous works in which the channel is rectangular; the channel is trapezoidal in... 

    Numerical optimization and inverse study of a microfluidic device for blood plasma separation

    , Article European Journal of Mechanics, B/Fluids ; Volume 57 , 2016 , Pages 31-39 ; 09977546 (ISSN) Shamloo, A ; Vatankhah, P ; Bijarchi, M. A ; Sharif University of Technology
    Elsevier Ltd  2016
    Abstract
    In this paper, a passive microfluidic device for continuous real time blood plasma separation has been studied and optimized. A numerical model is used to solve both the fluid flow and the particles confined within it. Red blood cells are considered as particles with diameter of 7μm. A parametric study is performed in order to characterize the effect of different parameters on separation and purity efficiency. In this study, four different variables were introduced to design the microfluidic device for blood plasma separation including: the angle between the daughter channels and the main channel, the widths, the diffuse angle and the number of daughter channels. Results show that the... 

    Design and simulation of a microfluidic device for acoustic cell separation

    , Article Ultrasonics ; Volume 84 , March , 2018 , Pages 234-243 ; 0041624X (ISSN) Shamloo, A ; Boodaghi, M ; Sharif University of Technology
    Elsevier B.V  2018
    Abstract
    Experimental acoustic cell separation methods have been widely used to perform separation for different types of blood cells. However, numerical simulation of acoustic cell separation has not gained enough attention and needs further investigation since by using numerical methods, it is possible to optimize different parameters involved in the design of an acoustic device and calculate particle trajectories in a simple and low cost manner before spending time and effort for fabricating these devices. In this study, we present a comprehensive finite element-based simulation of acoustic separation of platelets, red blood cells and white blood cells, using standing surface acoustic waves... 

    Design and fabrication of a two-phase diamond nanoparticle aided fast PCR device

    , Article Analytica Chimica Acta ; Volume 1068 , 2019 , Pages 28-40 ; 00032670 (ISSN) Madadelahi, M ; Ghazimirsaeed, E ; Shamloo, A ; Sharif University of Technology
    Elsevier B.V  2019
    Abstract
    Polymerase Chain Reaction (PCR) is an important and prevalent technique in biotechnology because of its crucial role in cloning DNA fragments and diagnostic applications. In the present study, a high-throughput two-phase PCR device is designed and fabricated which utilizes a serpentine microchannel together with a spiral structure. The former is for the droplet-generation and mixing and the latter is for the thermal cycling process. Moreover, the effect of diamond nanoparticles (diamondNP) on the performance of PCR is also investigated while using commercial PCR devices and the fabricated PCR device designed in this study. Using numerical simulation, it is shown that within the simple and...