Loading...
Search for: micro-mixers
0.011 seconds

    A depthwise averaging solution for cross-stream diffusion in a Y-micromixer by considering thick electrical double layers and nonlinear rheology

    , Article Microfluidics and Nanofluidics ; Volume 19, Issue 6 , 2015 , Pages 1297-1308 ; 16134982 (ISSN) Ahmadian Yazdi, A ; Sadeghi, A ; Saidi, M. H ; Sharif University of Technology
    Springer Verlag  2015
    Abstract
    Both nonlinear rheology and finite EDL thickness effects on the mixing process in an electroosmotically actuated Y-sensor are being investigated in this paper, utilizing a depthwise averaging method based on the Taylor dispersion theory. The fluid rheological behavior is assumed to obey the power-law viscosity model. Analytical solutions are obtained assuming a large channel width to depth ratio for which a 1-D profile can efficiently describe the velocity distribution. Full numerical simulations are also performed to determine the applicability range of the analytical model, revealing that it is able to provide accurate results for channel aspect ratios of ten and higher and quite... 

    A new scheme for improving the mixing efficiency in micro scale

    , Article ASME 2011 9th International Conference on Nanochannels, Microchannels, and Minichannels, ICNMM 2011 ; Volume 1 , 2011 , Pages 183-191 ; 9780791844632 (ISBN) Anbari, A. M ; Haroutunian, A ; Saidi, M. S ; Shafii, M. B ; Sharif University of Technology
    2011
    Abstract
    Generally speaking, most micro-fluidic mixing systems are limited to the low Reynolds number regime in which diffusion dominates convection, and consequently the mixing process tends to be slow and it takes a relatively long time to have two fluids completely mixed. Therefore, rapid mixing is essential in micro-fluidic systems. In order to hasten the mixing process in micro scale, in this study we come up with a novel scheme for a two dimensional micro-fluidic mixer which encompasses three pairs of electrodes, one pair embedded in the mixing chamber and two pairs located in the micro-channels before and after the mixing chamber. The width of the middle pair is assumed to be twice of the... 

    Modeling active micromixers with multiple microstirrers using smoothed particle hydrodynamics

    , Article Scientia Iranica ; Vol. 21, issue. 4 , 2014 , pp. 1390-1402 ; ISSN: 10263098 Jafarian, A ; Pishevar, A ; Saidi, M. S ; Sharif University of Technology
    Abstract
    The smoothed particle hydrodynamics method is used to explore the effects of design parameters on the mixing efficiency of two types of active micromixer. First, the complex flow field and the mixing process of two separated fluids in a square mixing chamber with nine symmetric microstirrers are simulated. The influence of design parameters, such as the microstirrer rotation arrangement and the angular velocity of the microstirrer, on the mixing performance, is investigated. The mixing index parameter on ten control points is calculated and the average mixing index is compared for different cases. Simulations illustrate that the rotation arrangement of microstirrers is a key parameter in the... 

    Enhancing active electro-kinetic micro-mixer efficiency by introducing vertical electrodes and modifying chamber aspect ratio

    , Article Chemical Engineering and Processing - Process Intensification ; Volume 142 , 2019 ; 02552701 (ISSN) Maleki Bagherabadi, K ; Sani, M ; Saidi, M. S ; Sharif University of Technology
    Elsevier B.V  2019
    Abstract
    Micro-mixers are considered as vital components of Micro Total Analysis systems (μTAS). Major objective in the design of micro-mixers is achieving high mixing quality in short mixing times. In this paper, numerical simulation of some micro-mixer designs has been carried out to understand the detailed flow pattern and thereby to propose modifications for improving mixing efficiency. It is well known that inducing convection will provide turbulent like behavior with corresponding mixing enhancement. In micro systems to drive the flow, electro-osmotic force is usually used by introducing electrodes. In this work, mixing electrodes have been implemented to induce convection and eddies. This... 

    Numerical simulation of mixing and heat transfer in an integrated centrifugal microfluidic system for nested-PCR amplification and gene detection

    , Article Sensors and Actuators, B: Chemical ; Volume 283 , 2019 , Pages 831-841 ; 09254005 (ISSN) Naghdloo, A ; Ghazimirsaeed, E ; Shamloo, A ; Sharif University of Technology
    Elsevier B.V  2019
    Abstract
    Nucleic acid amplification via polymerase chain reaction (PCR) is one of the essential and powerful methods used in a myriad of bio-assays in clinical laboratories. Application of microfluidic devices in biologically-related processes like PCR can result in the usage of less volume of reactant samples and reduce the processing time. By implementing PCR systems on centrifugal microfluidic platforms, automation and portability can be easily achieved. Although several methods have been developed, most of them are still dealing with challenges of the required high processing time. This study presents the numerical simulation of a fully automated PCR system with the goal of enhancing the mixing... 

    Kinetics of swelling of cylindrical functionally graded temperature-responsive hydrogels

    , Article Journal of Computational Applied Mechanics ; Volume 51, Issue 2 , December , 2020 , Pages 464-471 Namdar, A. H ; Sharif University of Technology
    University of Tehran  2020
    Abstract
    Cylindrical hydrogels have a wide variety of applications in microfluidics; for example, they serve as micro-valves, micro-mixers, and micro-lenses. The main advantages of them can be mentioned as their autonomous functionality due to their responses to environmental stimuli and simple geometry. Furthermore, functionally graded hydrogels have recently found applications in hydrogel actuators. Therefore, in this work, the kinetics of swelling, shrinking, and force generation of cylindrical functionally graded temperature-responsive hydrogels are investigated. Kinetics of cylindrical structure is investigated analytically by developing a mathematical model based on available constitutive... 

    Kinetics of swelling of cylindrical temperature-responsive hydrogel: a semi-analytical study

    , Article International Journal of Applied Mechanics ; Volume 12, Issue 8 , 2020 Namdar, A. H ; Mazaheri, H ; Sharif University of Technology
    World Scientific  2020
    Abstract
    Cylindrical hydrogels have a wide variety of applications, especially in microfluidics as micro-valves, micro-mixers, and micro-lenses. Main advantages of them can be mentioned as their simple geometry and autonomous functionality due to their responses to the environmental stimuli. In current research, kinetics of swelling, shrinking and force generation of cylindrical temperature-responsive hydrogels have been investigated analytically. According to this, models of fluid permeation and large deformation of the hydrogels were considered and an analytical solution was performed. In order to study the behavior of the cylindrical hydrogels, the temperature is changed between higher and lower... 

    A new non-dimensional parameter to obtain the minimum mixing length in tree-like concentration gradient generators

    , Article Chemical Engineering Science ; Volume 195 , 2019 , Pages 120-126 ; 00092509 (ISSN) Rismanian, M ; Saidi, M. S ; Kashaninejad, N ; Sharif University of Technology
    Elsevier Ltd  2019
    Abstract
    Microfluidic-based concentration gradient generators (CGGs) have a number of applications in chemical, biological and pharmaceutical studies. Thus, precise design of the microfluidic system is crucial to maintaining the desired concentration gradient in microchannels. One of the design considerations is the length of microchannels in the structure of a CGG. A CGG with a short length fails to provide the complete diffusive mixing, while the size of the microchip would unfavorably increase by incorporating a long CGG. Considering a CGG as a tree-like structure consisting of T-shaped micromixers, the mixing process of the species at a straight microchannel has been solved analytically. Herein,... 

    Analyzing mixing quality in a curved centrifugal micromixer through numerical simulation

    , Article Chemical Engineering and Processing: Process Intensification ; 2017 ; 02552701 (ISSN) Shamloo, A ; Vatankhah, P ; Akbari, A ; Sharif University of Technology
    Elsevier B.V 
    Abstract
    The Lab On a CD (LOCD), also known as Centrifugal Microfluidics, has evolved into a sophisticated platform for performing biomedical assays due to its marvelous miniaturization and accurate simulation of biological reactions. Among the numerous applications of the LOCD is fluid mixing. In this paper a centrifugal, serpentine micromixer is simulated and reformed toward better mixing performance. The micromixer was chosen to be curved as a curved design was found to be thrice as functional and compact as a rectilinear design, mixing-wise. The two angular velocity and opening radius parameters were originally hypothesized to affect mixing performance. Effect of angular velocity was studied over... 

    Numerical simulation for efficient mixing of newtonian and non-Newtonian fluids in an electro-osmotic micro-mixer

    , Article Chemical Engineering and Processing: Process Intensification ; Volume 107 , 2016 , Pages 11-20 ; 02552701 (ISSN) Shamloo, A ; Mirzakhanloo, M ; Dabirzadeh, M. R ; Sharif University of Technology
    Elsevier  2016
    Abstract
    The present study, deals with a new mixing technique using a two-phase electrode array, which is charged with alternating current (AC) signals, located in specific parts of the geometry. This significantly contributes to a chaotic mixing mechanism using a low amplitude AC voltage within a micro-channel. Study analysis demonstrates that the optimization of the effective parameters such as geometrical features, voltage amplitude, fluid inlet velocity, AC frequency and phase lag for a defined fluid can lead to an optimum and highly efficient mixer by considerably increasing disturbances in a primary highly ordered laminar flow. Three different geometries of micro mixer are studied; one-ring... 

    Numerical simulation of centrifugal serpentine micromixers and analyzing mixing quality parameters

    , Article Chemical Engineering and Processing: Process Intensification ; Volume 104 , 2016 , Pages 243-252 ; 02552701 (ISSN) Shamloo, A ; Madadelahi, M ; Akbari, A ; Sharif University of Technology
    Elsevier, B.V  2016
    Abstract
    Centrifugal microfluidics or the Lab on a CD (LOCD) has developed vast applications in biomedical researches and analyses. Fluid mixing is an application of the LOCD. In this paper, multiple centrifugal micromixers were simulated. Various parameters were originally presumed to have an effect on mixing performance. These parameters include inlet angle, angular velocity, cross-sectional profile, perpendicular length ratio and the number of channels in series. They were each analyzed through simulations. It was gathered that the inlet angle does not significantly affect the mixing quality. Increasing angular velocity steadily increases mixing quality for all geometries. The vertical triangular... 

    Analyzing mixing quality in a curved centrifugal micromixer through numerical simulation

    , Article Chemical Engineering and Processing: Process Intensification ; Volume 116 , 2017 , Pages 9-16 ; 02552701 (ISSN) Shamloo, A ; Vatankhah, P ; Akbari, A ; Sharif University of Technology
    Elsevier B.V  2017
    Abstract
    The Lab On a CD (LOCD), also known as Centrifugal Microfluidics, has evolved into a sophisticated platform for performing biomedical assays due to its marvelous miniaturization and accurate simulation of biological reactions. Among the numerous applications of the LOCD is fluid mixing. In this paper a centrifugal, serpentine micromixer is simulated and reformed toward better mixing performance. The micromixer was chosen to be curved as a curved design was found to be thrice as functional and compact as a rectilinear design, mixing-wise. The two angular velocity and opening radius parameters were originally hypothesized to affect mixing performance. Effect of angular velocity was studied over... 

    Three-dimensional numerical simulation of a novel electroosmotic micromixer

    , Article Chemical Engineering and Processing: Process Intensification ; Volume 119 , 2017 , Pages 25-33 ; 02552701 (ISSN) Shamloo, A ; Madadelahi, M ; Abdorahimzadeh, S ; Sharif University of Technology
    Elsevier B.V  2017
    Abstract
    Lab-on-a-chip (LOC) systems have been widely used in chemical and medical analyses. In this study, a novel T-shaped electroosmotic micromixer was simulated and the effects of different parameters on the mixing process were examined. These parameters include; inlet angle, number of conducting hurdles, arrangements of the hurdles, geometry of hurdles and chambers, aspect ratios of the channel cross-sectional profile, hurdle radius, and depth. It was found that the inlet angle has a direct influence on mixing index (σ). The effect of various number of hurdles (one, two, three and four hurdles) and their orientations was investigated. Simulations revealed that using two conducting hurdles is the... 

    Investigation of a Novel Microfluidic Device for Label-Free Ferrohydrodynamic Cell Separation on a Rotating Disk

    , Article IEEE Transactions on Biomedical Engineering ; Volume 67, Issue 2 , 2020 , Pages 372-378 Shamloo, A ; Besanjideh, M ; Sharif University of Technology
    IEEE Computer Society  2020
    Abstract
    Negative magnetophoresis is a novel and attractive method for continuous microparticle sorting inside a magnetic medium. In this method, diamagnetic particles are sorted based on their sizes using magnetic buoyancy force and without any labeling process. Although this method provides some attractive features, such as low-cost fabrication and ease of operation, there are some obstacles that adversely affect its performance, especially for biological applications. Most types of magnetic media, such as ferrofluids, are not biocompatible, and the time-consuming process of sample preparation can be threatening to the viability of the cells within the sample. Furthermore, in this method, both the... 

    Numerical Simulation and Characterization of an Electro-kinetic Micro-Mixer

    , M.Sc. Thesis Sharif University of Technology Ghaderian, Sepideh (Author) ; Saeedi, Mohammad Saeed (Supervisor) ; Sani, Mahdi (Supervisor)
    Abstract
    Most of the current literature on the simulation of the electro-osmotic flow in micro-channels decompose electric potential to two components; internal and external potentials. They usually approximate the near wall changes in the ion concentration (called double layer) which is physically responsible for electro-osmotic force by a model (like Poisson equilibrium distribution or Debye-Huckel approximation). There are reports in the literature which show that the approximations lose their fidelity for more complex situations. In this thesis we solve the full system of Nernst-Planck and Navier-Stokes equations by resolving electric double layer. The proposed... 

    Numerical Simulation and Analysis of Active Electro-Kinetic Micro-Mixer

    , M.Sc. Thesis Sharif University of Technology Maleki Bagherabadi, Kamyar (Author) ; Saeedi, Mohammad Saeed (Supervisor) ; Sani, Mahdi (Supervisor)
    Abstract
    The “Lab-on-a-Chip” is a micro-scale device which uses fluids as working medium and can handle number of functions such as sample preparation and transfer, separation, bio-sensing and detection. One of the important parts of these devices is micro-mixer, that should blend two fluid species in a short time with desirable mixing quality. Micro-mixers are classified as passive and active. By considering the micro-scale of mixers, turbulence phenomena cannot occur due to dominance of viscous forces, therefore the mixing only depends on molecular diffusion. This thesis consists of two main parts, in the first part algebraic multigrid has been studied and implemented in Rayan (in-house CFD code)....