Loading...
Search for: micropumping
0.005 seconds
Total 34 records

    Design of the micropump and mass-transfer compartment of a microfluidic system for regular nonenzymatic glucose measurement

    , Article Biotechnology Reports ; Volume 34 , 2022 ; 2215017X (ISSN) Najmi, A ; Saidi, M. S ; Kazemzadeh Hannani, S ; Sharif University of Technology
    Elsevier B.V  2022
    Abstract
    The aim of this paper is to design and numerically simulate the mass-transfer compartment and piezoelectric micropump of an implantable integrated microfluidic device for regular microdialysis-based nonenzymatic measurement of glucose level in diabetic patients. The device function is based on the process that the piezoelectric micropump pumps the dialysis fluid into the mass-transfer compartment microchannels, where the interstitial fluid (ISF) glucose diffusion into this dialysis fluid gives it a glucose content, then detected and measured in the sensor section. This diffusion takes place through the semipermeable membranes located in the microchannels at the base of the hollow... 

    Numerical optimization of three-cavity magneto mercury reciprocating (MMR) micropump

    , Article Engineering Applications of Computational Fluid Mechanics ; Volume 15, Issue 1 , 2021 , Pages 1954-1966 ; 19942060 (ISSN) Mehrabi, A ; Mofakham, A. A ; Shafii, M. B ; Sharif University of Technology
    Taylor and Francis Ltd  2021
    Abstract
    The operation of the three-cavity magneto mercury reciprocating (MMR) micropump, whose prototype were presented in an earlier companion paper, was numerically explored. In the three-cavity MMR micropump, three mercury slugs are moved by a periodic Lorentz force with a phase difference in three separate cavities. A consecutive motion of the slugs in their cavities transfer air from the inlet to the outlet. Two-dimensional OpenFOAM simulations were carried out to explore the influence of electric current excitation phase difference and back-pressure. The numerical simulations predicted the MMR micropump (with no valve) with a phase difference of (Formula presented.) and (Formula presented.)... 

    Electrical analogies applied on MMR micropump

    , Article Sensors and Actuators, A: Physical ; Volume 301 , 2020 Karmozdi, M ; Afshin, H ; Shafii, M. B ; Sharif University of Technology
    Elsevier B.V  2020
    Abstract
    Micropumps are among useful equipment in microsystems. The magnetically actuated mercury micropump, which has been introduced for less than a decade, is an innovative kind of micropumps which uses mercury droplets motion as a pumping agent. The equations governing this micropump are complex and their numerical solution is a time-consuming process, due to electromagnetic, hydrodynamic, and unsteady effects. In the present study, for the first time, using simplifying assumptions, the performance of a Magneto Mercury Reciprocating (MMR) micropump with electromagnetic actuation is studied through electrical analogy and then, the components and operational stages of the micropump are simulated... 

    The effect of droplet size, channel length and the amount of electromagnetic actuation force on reciprocating movement of mercury droplets in the magneto mercury reciprocating (MMR) micropumps

    , Article Sensors and Actuators, A: Physical ; Volume 283 , 2018 , Pages 204-210 ; 09244247 (ISSN) Karmozdi, M ; Shafii, M. B ; Afshin, H ; Sharif University of Technology
    Elsevier B.V  2018
    Abstract
    Micropumps are regarded as one of the devices used in microsystems, which are responsible for pumping working fluid. The magnetic reciprocating micropump is an example of the existing micropumps in which the pumping agent includes three liquid metal droplets placed inside lateral channels and reciprocated by the electromagnetic force inside their channels. The working fluid located inside the main channel is pumped through due to the movement of these three droplets. The time duration in which the droplet traverses the sub-channel length is crucial in the operation of the suggested micropump. The present study aims to evaluate the effect of the length of sub-channels, moving droplet volume... 

    Theoretical and experimental studies of a magnetically actuated valveless micropump

    , Article Journal of Micromechanics and Microengineering ; Volume 27, Issue 1 , 2017 ; 09601317 (ISSN) Ashouri, M ; Shafii, M. B ; Moosavi, A ; Sharif University of Technology
    Institute of Physics Publishing  2017
    Abstract
    This paper presents the prototype design, fabrication, and characterization of a magnetically actuated micropump. The pump body consists of three nozzle/diffuser elements and two pumping chambers connected to the ends of a flat-wall pumping cylinder. A cylindrical permanent magnet placed inside the pumping cylinder acts as a piston which reciprocates by using an external magnetic actuator driven by a motor. The magnetic piston is covered by a ferrofluid to provide self-sealing capability. A prototype composed of three bonded layers of polymethyl-methacrylate (PMMA) has been fabricated. Water has been successfully pumped at pressures of up to 750 Pa and flow rates of up to 700 μl min-1 while... 

    A novel reciprocating micropump based on Lorentz force

    , Article Progress in Biomedical Optics and Imaging - Proceedings of SPIE, 7 February 2015 through 9 February 2015 ; Volume 9320 , 2015 ; 16057422 (ISSN) ; 9781628414103 (ISBN) Salari, A ; Hakimsima, A ; Shafii, M. B ; Sharif University of Technology
    SPIE  2015
    Abstract
    Lorentz force is the pumping basis of many electromagnetic micropumps used in lab-on-a-chip. In this paper a novel reciprocating single-chamber micropump is proposed, in which the actuation technique is based on Lorentz force acting on an array of microwires attached on a membrane surface. An alternating current is applied through the microwires in the presence of a magnetic field. The resultant force causes the membrane to oscillate and pushes the fluid to flow through microchannel using a ball-valve. The pump chamber (3 mm depth) was fabricated on a Polymethylmethacrylate (PMMA) substrate using laser engraving technique. The chamber was covered by a 60 μm thick hyper-elastic latex rubber... 

    Experimental study of a novel Magneto Mercury Reciprocating (MMR) micropump, fabrication and operation

    , Article Sensors and Actuators, A: Physical ; Volume 194 , 2013 , Pages 277-284 ; 09244247 (ISSN) Karmozdi, M ; Salari, A ; Shafii, M. B ; Sharif University of Technology
    2013
    Abstract
    Today, MEMS have wide applications in modern technologies. Magneto hydro dynamic (MHD) micropumps play an important role in the MEMS industry and have been thoroughly studied in the recent years. In this study, the idea of classic reciprocating micropumps was combined with magneto hydro dynamics (MHD) to develop a novel Magneto Mercury Reciprocating (MMR) micropump. To attain this goal, the Lorentz force, as the actuation mechanism, was used to move a conductive liquid (mercury) slug in a reciprocating manner in order to suck the working fluid (air) from the inlet and pump it to the outlet. The performance of the fabricated MMR micropump was examined in terms of parameters such as pressure... 

    Treatment of the small time instability in the finite element analysis of fluid structure interaction problems

    , Article International Journal for Numerical Methods in Fluids ; Volume 71, Issue 6 , 2013 , Pages 756-771 ; 02712091 (ISSN) Afrasiab, H ; Movahhedy, M. R ; Sharif University of Technology
    2013
    Abstract
    In this paper, the fluid-structure interaction problem in mechanical systems in which a high frequency vibrating solid structure interacts with the surrounding fluid flow is considered. Such a situation normally appears in many microelectromechanical systems like a wide variety of microfluidic devices. A different implementation of the residual-based variational multiscale flow method is employed within the arbitrary Lagrangian-Eulerian formulation. The combination of the variational multiscale method with appropriate stabilization parameters is used to handle the so-called small time step instability in the finite element analysis of the fluid part in the coupled fluid-structure interaction... 

    Numerical investigation on the effect of the size and number of stages on the tesla microvalve efficiency

    , Article Journal of Mechanics ; Volume 29, Issue 3 , 2012 , Pages 527-534 ; 17277191 (ISSN) Mohammadzadeh, K ; Kolahdouz, E. M ; Shirani, E ; Shafii, M. B ; Sharif University of Technology
    2012
    Abstract
    In the present study, the effect of the number of stages of Tesla Micro-Valve (TMV), as well as the dependency of Reynolds number, Re, on the valve performance has been analyzed. For this purpose, different layouts include one to four-stage with different sizes are investigated numerically. The main criterion for evaluation of valves performance is diodicity, Di. Unsteady and steady flow in valve have been simulated and compared. It is shown that although there are some difference but the trend is similar for both responses. Finally, 2-D and steady state computations of the fluid flow have been utilized that reveal a strong dependence of Di on Re and pressure drop, ΔP. The results showed... 

    Fluid-structure interaction analysis in microfluidic devices: A dimensionless finite element approach

    , Article International Journal for Numerical Methods in Fluids ; Volume 68, Issue 9 , 2012 , Pages 1073-1086 ; 02712091 (ISSN) Afrasiab, H ; Movahhedy, M. R ; Assempour, A ; Sharif University of Technology
    2012
    Abstract
    In this paper, the so-called small time-step instability in finite element simulation of the fluid part is considered in fluid-structure interaction (FSI) problems in which a high-frequency vibrating structure interacts with an incompressible fluid. Such a situation is common in many microfluid manipulating devices. A treatment has been proposed that uses the dimensionless set of FSI governing equations in order to scale up the problem time step to a proper level that precludes the potential small time-step instability. Two-dimensional and three-dimensional finite element simulations of a mechanical micropumping device are performed to verify the efficiency of the presented approach. Solid... 

    Proposal of a new design for valveless micropumps

    , Article Scientia Iranica ; Volume 18, Issue 6 , December , 2011 , Pages 1261-1266 ; 10263098 (ISSN) Afrasiab, H ; Movahhedy, M. R ; Assempour, A ; Sharif University of Technology
    2011
    Abstract
    A new design for a valveless micropumping device has been proposed that integrates two existing pumping technologies, namely, the wall induced traveling wave and the obstacle-type valveless micropump. The liquid in the microchannel is transported by generating a traveling wave on the channel, while the placing of two asymmetric trapezoid obstacles, along the centerline of the channel inlet and outlet, leads to a significant (up to seven times) increase of the net flow rate of the device. The effectiveness of this innovative design has been proved through a verified three-dimensional finite element model. FluidStructure Interaction (FSI) analysis is performed in the framework of an Arbitrary... 

    Rotary magnetohydrodynamic micropump based on slug trapping valve

    , Article Journal of Microelectromechanical Systems ; Volume 20, Issue 1 , December , 2011 , Pages 260-269 ; 10577157 (ISSN) Moghadam, M. E ; Shafii, M. B ; Sharif University of Technology
    2011
    Abstract
    A novel rotary magnetohydrodynamic (MHD) (RMHD) micropump is presented in this paper in order to both benefit exclusive advantages from the MHD micropumps and eliminate the current obstacles in their implementation. Lorentz force, which is the actuation mechanism in RMHD, is used to propel a mercury slug in a circular microchannel in order to suck the working fluid from the inlet and pump it to the outlet. This idea is integrated with a valve which prevents the working fluid from passing through, while allowing the mercury slug to pass, during each pumping loop. The performance of a fabricated RMHD is evaluated, considering parameters such as pressure difference, running duration, electric... 

    Numerical anaysis of a thermopneumatic micropump

    , Article ASME 2010 8th International Conference on Nanochannels, Microchannels, and Minichannels Collocated with 3rd Joint US-European Fluids Engineering Summer Meeting, ICNMM2010, 1 August 2010 through 5 August 2010, Montreal, QC ; 2010 , Pages 1135-1140 ; 9780791854501 (ISBN) Shahsavari, S ; Shafii, M. B ; Saidi, M. H ; Sharif University of Technology
    2010
    Abstract
    Thermopneumatic micropump is one type of positive displacement micropump, which has many applications due to its relatively large stroke volume, low working voltage, and simple fabrication in microscale. In this paper, a numerical study of heat transfer and fluid flow in a valveless thermopneumatically driven micropump is presented. For rectifying the bidirectional flow, a nozzle and a diffuser are used as the inlet and outlet channels of the chamber. Since the fluid flow is induced by the motion of a diaphragm, the numerical simulation includes fluid structure interaction, which requires applying a dynamic mesh. The domain of solution is divided into two sections; the actuator unit, which... 

    Performance of valveless diffuser micropumps under harmonic piezoelectric actuation

    , Article 8th Biennial ASME Conference on Engineering Systems Design and Analysis, ESDA2006, Torino, 4 July 2006 through 7 July 2006 ; Volume 2006 , 2006 ; 0791837793 (ISBN); 9780791837795 (ISBN) Ahmadian, M. T ; Saidi, M. H ; Mehrabian, A ; Bazargan, M ; Kenarsari, S. D ; Sharif University of Technology
    American Society of Mechanical Engineers  2006
    Abstract
    Valveless piezoelectric micropumps are in wide practical use due to their ability to conduct particles with absence of interior moving mechanical parts. The objective of this paper is to obtain the fluid flow response to actuation frequency of a passive diffuser valve under harmonic pressures. In this regards a 2D model of a micropump valves and chambers is analyzed. The analysis is performed for 10Kpa back pressure on micropump chamber and actuation frequencies within the range of 1Hz to 10 KHz. Results show the highest velocity in the direction of diffuser axis occurs at the narrow diffuser neck while flow direction reverses every half period. For low frequencies, a parabolic velocity... 

    A new model for dynamic analysis of side mounted diffuser valve micropumps

    , Article 8th Biennial ASME Conference on Engineering Systems Design and Analysis, ESDA2006, Torino, 4 July 2006 through 7 July 2006 ; Volume 2006 , 2006 ; 0791837793 (ISBN); 9780791837795 (ISBN) Ahmadian, M. T ; Mehrabian, A ; Sharif University of Technology
    American Society of Mechanical Engineers  2006
    Abstract
    Valveless micropumps are widely used due to simple structure, durability and low maintenance. Understanding the fluid-membrane interaction and performance criteria is still a challenging problem for the scientists. In this work, a new model for side mounted valve micropumps is developed to obtain dynamic response of micropump with respect to piezoelectric actuation. The parameters of this model are obtained in terms of actuation frequency and geometrical dimensions of the micropump. Balancing elastic, inertial and damping forces result in the governing equation of the micropump system model. Analytical studies for the bottom mounted valve micropump indicate pump flux is independent of the... 

    Experimental and analytical modeling of phase change micropump

    , Article 8th Biennial ASME Conference on Engineering Systems Design and Analysis, ESDA2006, Torino, 4 July 2006 through 7 July 2006 ; Volume 2006 , 2006 ; 0791837793 (ISBN); 9780791837795 (ISBN) Saidi, M. H ; Safaei, H ; Sadjadi, B ; Pirouzpanah, S ; Sharif University of Technology
    2006
    Abstract
    In this research a phase change micropump as a novel type of non-mechanical micropumps has been investigated. A one dimensional model has been developed to describe the pumping mechanism and assess the working characteristics of the micropump. Conservation of mass, momentum and energy have been employed to obtain an algebraic equation for the flow rate which depends on seven non-dimensional numbers. The governing equation has been solved to study the effect of various operating parameters on the micropump performance. To verify the analytical approach, an experimental set up has been constructed. The results show that the theoretical model is in reasonable agreement with the experimental... 

    Propose and characteristics study of a new actuation method for micropumps, using membrane buckling

    , Article 4th ASME Integrated Nanosystems Conference: Design, Synthesis, and Applications, Berkeley, CA, 14 September 2005 through 16 September 2005 ; 2005 , Pages 25-26 ; 0791842088 (ISBN); 9780791842089 (ISBN) Saghafi, M. H ; Ahmadian, M. T ; Salehi, H ; Monazami, R ; Zade, A. Q ; Sharif University of Technology
    American Society of Mechanical Engineers  2005
    Abstract
    In this paper, we present a novel idea on actuation system in micropumps. The prominent goal of this paper is to propose and prove a mechanical actuation system which works in high frequency and has good ability in producing flow and pressure in micro actuation system. As like as other common micropumps, the proposed scheme is consisted of two check valves and an actuation space. The actuation space includes a volume of liquid in a chamber and a cylindrical membrane as the actuator. The main aspect of this idea is employment of buckling as a consequence of incensement of its internal pressure caused by temperature rising in the membrane. Rise of temperature is done by passing a controllable... 

    Design and Making of Piezoelectric-based Micro-airpump for Flow Control Application

    , M.Sc. Thesis Sharif University of Technology Valizadeh, Ali (Author) ; Ebrahimi, Abbas (Supervisor)
    Abstract
    The importance of creating a fluid flow with accurate and controllable flow in many industries is undeniable. There are several ways to create this type of flow, and a variety of pumps can be used to create such a flow. The presence of noise, limitations in reducing the flow rate (sometimes in some pumps the flow rate can not be reduced to a minimum), depreciation costs and many other limitations, reduce the attractiveness of using conventional pumps in some applications. The subject of this project is the design and construction of piezoelectric based micro-pumps to solve the above problems. In many applications, the need for fluid flow with very low flow and high quality and accuracy is... 

    Design of a Microfluidic System for Continuous Glucose Measurement, as well as Fabricating and Experimentally Testing the Biosensor

    , M.Sc. Thesis Sharif University of Technology Najmi, Armita (Author) ; Saeedi, Mohammad Saeed (Supervisor) ; Kazemzadeh Hannani, Siamak (Supervisor) ; Shahrokhian, Saeed (Co-Supervisor)
    Abstract
    Diabetic patients, unlike other people whose blood glucose vary in a limited and normal range, encounter hyperglycemia and hypoglycemia, so their glucose level should be measured periodically and kept in the normal range. The aim of this research is to design an implantable integrated microfluidic system in order to regularly measure the glucose level in the human body, using the microdialysis method. The main compartments of this system are a micropump, array of hollow microneedles at the base of them located semipermeable membranes, the channels of dialysis fluid and an electrochemical sensor for measuring the glucose level. The micropump of this system is designed and simulated based on... 

    Study on Motion of Electrical Conductor Fluid Plug Actuated Electromagnetically in Microsystems

    , Ph.D. Dissertation Sharif University of Technology Karmozdi, Mohsen (Author) ; Shafii, Mohmmad Behshad (Supervisor) ; Afshin, Hossein (Supervisor)
    Abstract
    Micropumps are regarded as one of the devices used in microsystems, which are responsible for pumping working fluid. The Mercury Magneto Reciprocating (MMR) micropump, which has been introduced for less than a decade, is an innovative kind of micropumps which the pumping agent includes three liquid metal droplets (LMD) placed inside lateral chambers and reciprocated by the electromagnetic force inside the chambers. The working fluid located inside the main channel is pumped through due to the movement of these three LMDs. The equations governing this micropump are complex and their numerical solution is a time-consuming process, due to electromagnetic, hydrodynamic, and unsteady effects. The...