Loading...
Search for: microwaves
0.802 seconds
Total 355 records

    Synthesis of Colloidal Silver Nanoparticles by Microwave Method and Study of its Antibacterial Activity

    , M.Sc. Thesis Sharif University of Technology Abtahi, Nikoo (Author) ; Dolati, Abolghasem (Supervisor)
    Abstract
    Silver nanoparticles are widely used in different industries because of their antibacterial effects. Many synthesis methods were used to obtain silver nanoparticles. In this study the microwave method is used to synthesize nanosilver. This method is easier and faster in comparison to other methods. The effect of precursors’ concentrations, using different solvents, different remaining time in microwave and microwave power were studied. By increasing the reaction time, microwave power and using different solvents, nanosilver particle size varies from 2 nm up to 300nm. The TEM images, size distribution, XRD patterns and UV-visible spectrum are shown. The obtained nanosilver was used to observe... 

    An Uplink Packet Scheduling Algorithm in Fixed PMP WiMAX Networks with TDD Frame Structure

    , M.Sc. Thesis Sharif University of Technology Nazari, Sonia (Author) ; Beigy, Hamid (Supervisor)
    Abstract
    Worldwide interoperability for Microwave Access (WiMAX) is one of the most dominant cell-based broadband wireless metropolitan access technologies. Packet scheduling algorithm specifies the packet transmission order. In WiMAX standard, packet scheduling algorithm is not defined and its efficient design is left for developers and researchers. The existing researches in the scope of uplink packet scheduling, which is the most challenging packet scheduling scheme, consider only one cell. However the uplink available resources might not be enough when there are many packets that should be scheduled. To solve this problem, we propose an algorithm that uses the load balancing mechanisms that are... 

    Modelling and Simulation of Heat Transfer in the Moicrowave Sintering Process of Uranium Dioxide

    , M.Sc. Thesis Sharif University of Technology Ahmadi, Mustafa (Author) ; Outokesh, Mohammad (Supervisor) ; Mousavian, Khalil (Supervisor)
    Abstract
    One of the steps in the production of nuclear fuel pellets used in the core of a nuclear reactor is sintering. Sintering means the consolidation of a pressed powder sample into an integrated solid. This process can be done in different ways, such as traditional sintering, microwave, spark plasma, etc. In the process of fabrication of nuclear fuel pellets, after producing uranium dioxide in powder form and making corrections on the size distribution of powder grains, it would be nolded and then sintered. In this research, the temperature evolution of the green pellets introduced to microwave heating were investigated. In this report, a brief overview of the principles of microwave heating is... 

    Theoretical and Experimental Study to Conversion of AUC to UO2 by Microwave Heating

    , Ph.D. Dissertation Sharif University of Technology Labbaf, Mohammad Hossein (Author) ; Otukesh, Mohammad (Supervisor) ; Ghannadi Maragheh, Mohammad (Co-Advisor) ; Ghasemi, Mohammad Reza (Co-Advisor)

    Call Admission Control Schemes in WiMAX Networks

    , M.Sc. Thesis Sharif University of Technology Mokhtari, Zeinab (Author) ; Beigy, Hamid (Supervisor)
    Abstract
    The rapid growth of broadband wireless access (BWA) has increased the demand of new  application  such  as  VoIP,  video  conferencing,  online  gaming  each  of  which  has  different requirement for quality of service. Due to limited bandwidth provided for these networks,  one  of  the  most  important  issues  is  how  effective  we  manage  bandwidth  in  order to support requests. The quality of service is an important indicator of the effective management  of  bandwidth.  Using  mechanisms  of  call  admission  control is  a  commonly  accepted method for balance between quality of service and increase of utilization resource  in  cellular  mobile  networks.  In  fact, ... 

    Multiscale Multiphysics Analysis of Deformable Microwave Metasurfaces Under Large Deformations and Prototype Fabrication

    , Ph.D. Dissertation Sharif University of Technology Karimi Mahabadi, Rayehe (Author) ; Naghdabadi, Reza (Supervisor) ; Sohrabpour, Saeed (Supervisor) ; Goudarzi, Taha (Co-Supervisor)
    Abstract
    Electromagnetic metamaterials are designed artificial materials with sub-wavelength resonant inclusions. They can exhibit extraordinary properties such as negative permittivity, negative permeability, and anomalous reflection/refraction. Metasurfaces are 2D counterparts of metamaterials. Here, we proposed a framework for the multiscale multiphysics analysis of deformable metasurfaces. Nonlinear mechanical analysis (Geometry and material behavior), periodic boundary conditions, homogenization, multiscale analysis, and electromagnetic analysis are implemented in this framework. Benefiting from the framework, we proposed a multifunctional hyperelastic structured surface that can generate... 

    Numerical Simulation of Drug Delivery to Cancerous Tumors

    , M.Sc. Thesis Sharif University of Technology Hosseinizadeh, Ehsan (Author) ; Dehghani Firoozabadi, Bahar (Supervisor)
    Abstract
    The tumor is a collection of cells (cell mass) caused by the lack or ineffectiveness of cellular proliferation inhibitors. Many types of cancers are associated with the emergence of a tumor, a tissue with specific physiological characteristics. The tumors grow very fast so researchers try to prevent their growth and eventually destroy them. Thermal ablation by MWA(microwave ablation) is a common and minimally-invasive treatment for primary and secondary liver tumors that can not be cured by surgery. During treatment, the tissue is heated by microwaves and at a temperature higher than 50 degree Celsius, destroyed by thermal ablation. In this study, two thermal models have been used to... 

    Fabrication and Characterization of Nickel-Cobalt Catalyst by One-pot Combustion Synthesis Method for Synthesis Gas Production in Dry Reforming Methane Process

    , M.Sc. Thesis Sharif University of Technology Babaei, Mojtaba (Author) ; Sadrnezhad, Khatiboleslam (Supervisor)
    Abstract
    Dry reforming methane is a process during which two greenhouse gases, CH4 and CO2, using Ni-based catalysts, are altered into valuable H2 and CO gases, which are very useful from an economic and environmental point of view. The main problem with Ni-based catalysts is the formation of carbon in the dry methane reforming, which leads to rapid deactivation of the catalyst. In this research, a 10Ni-5Co/Al2O3 bimetallic catalyst was prepared by one-pot microwave-assisted combustion synthesis with a stoichiometric amount of fuel (urea) and without the use of additives. The catalyst was then calcined for 12 h at 550oC. The structure, chemical composition, particle distribution, and morphology of... 

    Synthesis and Characterization of Hybrids 3D Graphene/gold Nanostructures for Supercapacitors and Electrochemical Biosensors

    , Ph.D. Dissertation Sharif University of Technology Saeedi, Mohsen (Author) ; Simchi, Abdolreza (Supervisor)
    Abstract
    Energy conversion and storage as well as life sciences are among the areas of our daily life. Interest in carbon nanomaterials for energy storage systems such as supercapacitors has enormously risen due to their attractive electrical conductivity, chemical inertness, and charge storage capacity. Producing these nanomaterials with a simple, scalable, and cost-effective method is the major problem for commercializing them. The reduction of graphitic oxide is a versatile procedure to prepare 3D graphene. Despite many green methods, the dynamics behind ultrafast thermal graphitization have remained elusive. Here, we demonstrate an effort to understand the graphitization mechanism of graphitic... 

    Synthesis and Characterization of Hybrids 3D Graphene/gold Nanostructures for Supercapacitors and Electrochemical Biosensors

    , Ph.D. Dissertation Sharif University of Technology Saeidi, Mohsen (Author) ; Simchi, Abdolreza (Supervisor)
    Abstract
    Energy conversion and storage as well as life sciences are among the areas of our daily life. Interest in carbon nanomaterials for energy storage systems such as supercapacitors has enormously risen due to their attractive electrical conductivity, chemical inertness, and charge storage capacity. Producing these nanomaterials with a simple, scalable, and cost-effective method is the major problem for commercializing them. The reduction of graphitic oxide is a versatile procedure to prepare 3D graphene. Despite many green methods, the dynamics behind ultrafast thermal graphitization have remained elusive. Here, we demonstrate an effort to understand the graphitization mechanism of graphitic... 

    Synthesis and Characterization of CuO Microflowers/Ppy Nanowires NCs as Anode Materials for Lithium-ion Battery

    , M.Sc. Thesis Sharif University of Technology Helli, Motahareh (Author) ; Sadrnezhad, Khatiboleslam (Supervisor)
    Abstract
    Novel Copper Oxide microflowers /Polypyrroles nanowire nanocomposites with various wight ratio have been synthesized.The synthesized CuO/Ppy NCs and Cuo microflowers are characterized by XRD, FT-IR, TGA, FESEM and EDX line analysis/elemntal mapping. The formation mechanism of CuO microflower and Ppy nanowires are also well explained.All syntesized samples have been used as as anode material for li-ion batteries in order to measure their electochemical lithium-ion storage properties. It is demonstrated that presence of Ppy nanowire with different weight ratio plays important role in lithium-storage properties of the hybrid CuO/Ppy NCs. With increase in the mass ratio of Ppy nanowire cyclic... 

    Copper Oxide/g-C3N4 Nanocomposites: Synthesis and Optical and Photocatalytic Properties Investigation

    , M.Sc. Thesis Sharif University of Technology Hosseini Hosseinabad, Morteza (Author) ; Sadrnezhaad, Khatiboleslam (Supervisor)
    Abstract
    Herein, cupric oxide (CuO)/graphitic carbon nitride (g-C3N4) is synthesized under microwave irradiation for enhanced photoelectrochemical (PEC) performance and photostability. A facile, one-pot method was utilized to directly deposit the nanocomposite onto FTO from a solution containing copper precursor and urea. Possible mechanisms of CuO/g-C3N4 formation and PEC performance improvement were examined via XRD, FTIR, FESEM, XPS, UV-Vis, and PL. Controlled amounts of urea determined the morphological evolution of CuO and the formation of a protective carbon layer, while its excess quantity converted to g-C3N4 in the presence of CuO. Through heat treatment of the nanocomposite, carbon-doped... 

    Microwave Assisted Synthesis of Sno2 Nanoparticles from Sn Coated Cu Wire Scraps

    , M.Sc. Thesis Sharif University of Technology Seza, Ashkan (Author) ; Sadrnezhaad, Kh (Supervisor) ; Mohammadi, MohammadReza (Supervisor)
    Abstract
    Tin Oxide Nanoparticle (SnO2) with the band gap of around 3.6 eV is one of the promising materials in various fields such as photocatalysis water splitting, pollutant removal and also biotechnology. Inorder to use this material in a visible-light rang, some promotions should be conducted.By combining SnO2 nanoparticles with the non-metalic graphitic carbon nitride (g-C3N4), a proper nanocomposite with wide range of application can be obtained. But, in order to industrialize this material, the cost of the final product is an imperative issue to consider.Here we have introduced a novel and low-cost method for synthesis of g-C3N4/SnO2 nanocomposite by using urea as a precursor for g-C3N4 and... 

    Synthesis and Surface Modification of Manganese Oxide Nanoparticles as MRI Contrast Agent

    , M.Sc. Thesis Sharif University of Technology khodaei, Azin (Author) ; Madaah Hosseini, Hamid Reza (Supervisor)
    Abstract
    Recently, preparation of biofunctionalized nanoparticles with specific magnetic properties has received great attention for medical imaging. Targeting magnetic nanoparticles with high signal in magnetic resonance imaging (MRI) could be a powerful tissue imaging and cellular tracking agent. Main purpose of this research is the synthesis of Mn3O4@polymer composite nanoparticles as a positive MRI contrast agent. Nanoparticles were prepared by modified microwavepolyol and precipitation method with average particle size of 18 and 3nm.Respectivelythe effect of diffrent parameters such as time, surfactant and the presence of water in polyol method and the amount ofpolyethylene glycol as surfactant... 

    Synthesis and Surface Modification of Gadolinium Oxide Nanoparticles (Gd2O3) for MRI Contrast Agent

    , M.Sc. Thesis Sharif University of Technology Vahdatkhah, Parisa (Author) ; Madaah Hosseini, Hamid Reza (Supervisor)
    Abstract
    In recent years, much attention has been paid to the development of biofunctionalized nanoparticles with special magnetic properties for using in clinical imaging. Targeted magnetic materials with high MRI signal intensity can be used in tissue imaging and molecular and cellular detection as valuable tools. The aim of this study has been to synthesize the nanocomposite including the functional gadolinium oxide (Gd2O3) nanoaprticles for MRI contrast agent. Synthesis and in-situ surface modification of ultrasmall Gd2O3 nanoparticles (2.5nm) with PVP was performed by a microwave modified polyol in 5 min. The structure and size of synthesized nanoparticles were studied using X-ray diffraction... 

    An investigation on the Microstructure and Properties of Alumina-Carbon Nanotube (CNT) Nanocomposite Produced by Conventional and Microwave Sintering

    , M.Sc. Thesis Sharif University of Technology Ghobadi, Hossein (Author) ; Nemati, Ali (Supervisor) ; Sadeghian, Zahra (Supervisor) ; Ebadzadeh, Toraj ($item.subfieldsMap.e)
    Abstract
    Carbon nanotubes were coated with boehmite nanoparticles by sol gel method. According to the TGA analysis, formation of gamma-alumina from boehmite was at 500 . SEM investigation revealed the uniform coverage of gamma-alumina nanoparticles on the surface of CNTs. Composite powders containing 1, 2 and 3vol% of coated CNTs were produced by mixing the coated CNTs with alumina suspension. Phase analysis of composite powder calcined at 500 showed the complete decomposition of boehmite and formation of gamma-alumina. Samples were shaped by cold isostatic pressing at the pressure of 180MPa and sintering was performed using two different methods of conventional and microwave. Existance of the CNTs... 

    Sintering Improvement of Nano Hydroxyapatite Bodies by Magnesium Incorporation and Using Microwave Sintering

    , M.Sc. Thesis Sharif University of Technology Ghods, Amin (Author) ; Sadrnejhad, Khatiboleslam (Supervisor) ; Behnam Ghader, Ali Asghar (Supervisor)
    Abstract
    Magnesium is one of most important elements in bio hedroxyapatite. Magnesium effects on all stages of bone growth metabolism. Also increases bone’s osteoblastic and osteoclastic activities. That’s why incorporation of Mg ions into hudroxyapatite structure has become one of interesting fields for bone implants production. In addition Mg can improve sintering and mechanical properties of HAp. Thet’s why in this investigation the effect of incorporated Mg into HAp structure has been studied. Three kinds of powders have been prepared to perform this study. Pure HAp nano powder produced via sol-gel method, Mg contain HAp nano powder produced via sol-gel method and a mixture of nano HAp and nano... 

    Preparation of Calcium Phosphate Alumina Nano Biocomposites

    , M.Sc. Thesis Sharif University of Technology Moshkforoush, Arash (Author) ; Nemati, Ali (Supervisor) ; Behnam, Ghader (Supervisor)
    Abstract
    The purpose of this study was aimed to evaluate the effect of Alumina on the sintering, phase development, mechanical properties and biocompatibility of fluoridated hyroxyapatite sintered via conventional furnace and microwave assisted oven. Green compacts having 30wt% Alumina nanoparticles were sintered without pressure at various temperatures (1000-1400°C) for one hour in conventional furnace. Phase composition, thermal behavior and morphological analyses were performed using X-ray diffraction (XRD), simultaneous thermogravimetry and differential thermal analysis (STA), and Scanning Electron Microscopy (SEM), respectively. With the increase in temperature and the Alumina content, severe... 

    Imaging Through a Scattering Medium Using Microwave Frequency

    , M.Sc. Thesis Sharif University of Technology Ebrahimi Vishki, Mohammad Reza (Author) ; Kavehvash, Zahra (Supervisor)
    Abstract
    Radio waves can penetrate through walls and various scattering environments, allowing us to communicate with mobile phones within buildings or use wireless waves to transfer data from one room to another despite physical obstacles. Radio signals, especially at lower frequencies, are highly effective in traversing such environments. However, the ability to penetrate walls does not imply the ability to "see through" them. In this thesis, we focus on examining the development and improvement of imaging techniques in the presence of walls. The aim is to present the concept of imaging through walls in a comprehensible manner for researchers and enthusiasts, facilitating the development and... 

    Phase Noise Reduction of a Dielectric Resonator Oscillator due to Flicker Noise by Selection Various Bias Circuits

    , M.Sc. Thesis Sharif University of Technology Amirli, Sahar (Author) ; Banai, Ali (Supervisor)
    Abstract
    Phase noise is one factor determining the quality of radar and telecommunication systems. Oscillators play an important role in system phase noise, as a signal generator for information modulation. Due to the greater impact of flicker noise at near carrier frequency than other types of phase noise sources, its reduction will greatly impact the phase noise of the telecommunication system. In this research, the simulation of phase noise and flicker noise of an oscillator with various types of bias circuit methods, such as bias with two independent sources, self-bias, improved self-bias, active bias, and low-frequency feedback, has been done. Then, a microwave dielectric resonator oscillator...