Loading...
Search for: moakhar--r--s
0.007 seconds

    Electrochemical performance and elevated temperature properties of the TiO2-Coated Li[Ni0.8Co0.1Mn0.1]O2 cathode material for high-safety li-ion batteries

    , Article ACS Applied Energy Materials ; Volume 4, Issue 5 , 2021 , Pages 5304-5315 ; 25740962 (ISSN) Razmjoo Khollari, M. A ; Azar, M. K ; Esmaeili, M ; Malekpour, N ; Hosseini Hosseinabad, S. M ; Moakhar, R. S ; Dolati, A ; Ramakrishna, S ; Sharif University of Technology
    American Chemical Society  2021
    Abstract
    Nowadays, the LiNi0.8Co0.1Mn0.1O2 (NCM811) cathode material has attracted great research interest due to its high energy density and less usage of costly raw materials. However, the high nickel content of NCM811 brings about an extremely unstable interface between the electrode and electrolyte and therefore inferior cyclic stability. Herein, we have proposed a straightforward method to deliver 1, 2, and 4 wt % of TiO2 nanoparticles (NPs) on the surface of the NCM811 cathode material and to improve its properties at room and high temperatures. Based on scanning electron microscopy and transmission electron microscopy observations, the coating thickness varies from 10 to 35 nm and the 2 wt %... 

    Electrochemical investigation of electrodeposited platinum nanoparticles on multi walled carbon nanotubes for methanol electro-oxidation

    , Article Journal of Chemical Sciences ; Volume 129, Issue 9 , 2017 , Pages 1399-1410 ; 09743626 (ISSN) Mokarami Ghartavol, H ; Moakhar, R. S ; Dolati, A ; Sharif University of Technology
    Abstract
    Abstract: The electrodeposition of platinum nanoparticles (PtNPs) on multiwall carbon nanotubes (MWCNTs)/fluorine-doped tin oxide glass (FTO) was investigated. Nucleation and growth mechanisms were studied via Scharifker and Hills model. Chronoamperometry results clearly show that the electrodeposition processes are diffusion-controlled and the diffusion coefficient is 1.5×10-5cm2/s. The semi-spherical particles with lamellar morphology were observed in 1M H 2SO 4, while a petal shape was discerned in 0.5M H 2SO 4. Also, dispersion, size, and uniformity of PtNPs were investigated, where the finer distribution of PtNPs with the average size less than 100 nm was obtained in 0.5M H 2SO 4... 

    Morphologically tailored CuO photocathode using aqueous solution technique for enhanced visible light driven water splitting

    , Article Journal of Photochemistry and Photobiology A: Chemistry ; Volume 337 , 2017 , Pages 54-61 ; 10106030 (ISSN) Kushwaha, A ; Moakhar, R. S ; Goh, G. K. L ; Dalapati, G. K ; Sharif University of Technology
    Elsevier B.V  2017
    Abstract
    Cupric oxide (CuO) nanostructures are grown on fluorine doped tin oxide (FTO) coated glass substrate using aqueous solution approach. The concentration of precursor's solution has significant impact on morphology of CuO nanostructure. By varying concentration of precursor, the growth of two different morphologies (oriented nanosheets and nanoleaves) is achieved. X-ray diffraction pattern and X-ray photoelectron spectroscopy reveals formation of pure CuO crystalline phase. Mott-Schottky characteristic confirms the p-type semiconducting nature. Ultrathin structures of nanoleaves lead to higher light trapping and light absorption in visible-NIR region. The nanoleaves film has lower bandgap in... 

    TiO2 surface nanostructuring for improved dye loading and light scattering in double-layered screen-printed dye-sensitized solar cells

    , Article Journal of Applied Electrochemistry ; Volume 45, Issue 8 , 2015 , Pages 831-838 ; 0021891X (ISSN) Jalali, M ; Moakhar, R. S ; Kushwaha, A ; Goh, G. K. L ; Sadrnezhaad, S. K ; Riahi Noori, N ; Sharif University of Technology
    Kluwer Academic Publishers  2015
    Abstract
    Abstract: Surface-nanostructured TiO2 nanorods were synthesized hydrothermally at 180 °C. Such nanorods have ‘crack-like’ surfaces that resemble burnt charcoal. Compared to nanorods with relatively smoother surfaces, the charcoal-like nanorods have higher-specific surface areas. By using the nanorods as a light-scattering layer in double-layered dye-sensitized solar cells, the cells based on the charcoal-like nanorods have 20 % higher dye loading and also higher diffuse reflectance compared with cells utilizing ‘smooth’ nanorods. The efficiency of a screen-printed double-layer dye-sensitized solar cell based on the charcoal-like nanorods is higher at 7.29 %. Electrochemical...