Loading...
Search for: model-experimentations
0.007 seconds
Total 55 records

    Experimental investigation and finite element modelling of PMMA/carbon nanotube nanobiocomposites for bone cement applications

    , Article Soft Matter ; Volume 18, Issue 36 , 2022 , Pages 6800-6811 ; 1744683X (ISSN) Sadati, V ; Khakbiz, M ; Chagami, M ; Bagheri, R ; Chashmi, F. S ; Akbari, B ; Shakibania, S ; Lee, K. B ; Sharif University of Technology
    Royal Society of Chemistry  2022
    Abstract
    Multi-walled carbon nanotubes (MWCNTs) are one of the preferred candidates for reinforcing polymeric nanobiocomposites, such as acrylic bone type of cement. In this study, at first, bulk samples of the reinforced polymethylmethacrylate (PMMA) matrix were prepared with 0.1, 0.25, and 0.5 wt per wt% of MWCNTs by the casting method. Tensile and three-point bending tests were performed to determine the essential mechanical properties of bone cement, such as tensile and bending strengths. The tensile fracture surfaces were investigated by scanning electron microscopy (SEM). The commercial software (Abaqus) was used to conduct finite element analysis (FEA) by constructing a representative volume... 

    Ethylene and cyclohexane co-production in the fixed-bed catalytic membrane reactor: Experimental study and modeling optimization

    , Article Journal of Membrane Science ; Volume 643 , 2022 ; 03767388 (ISSN) Karimi Darvanjooghi, M. H ; Malakootikhah, M ; Magdouli, S ; Brar, S. K ; Sharif University of Technology
    Elsevier B.V  2022
    Abstract
    In this study, a fixed-bed catalytic membrane reactor was used for the production of ethylene and cyclohexane from ethane and benzene. A two-dimensional non-isothermal mathematical model was used for estimating the performance of the membrane reactor. Furthermore, the effect of inlet temperature (720–1080 K), feed molar ratio (3–10) and the reactor spacetime (1–76 kgCat.s/mol) was studied on the conversion of ethane to ethylene and benzene to cyclohexane. The results of modeling showed that with the increase of inlet temperature the conversion of both (de)-hydrogenation reactions increased and the 95% of ethane conversion was achieved when the molar ratio of benzene/ethane was fixed on 3.... 

    Accurate prediction of viscosity of mixed oils

    , Article Petroleum Science and Technology ; Volume 39, Issue 9-10 , 2021 , Pages 351-361 ; 10916466 (ISSN) Khoshmardan, M. A ; Mehrizadeh, M ; Zand, N ; Najafi Marghmaleki, A ; Sharif University of Technology
    Bellwether Publishing, Ltd  2021
    Abstract
    Viscosity of mixed oil is an important parameter which is required in transportation and production processes of mixed crude oils. There is no universal and general model for prediction of viscosity of mixed oils at different conditions. Hence, developing simple, accurate and general models for prediction of mixed oil viscosity is of great importance. In this work three computer based models named MLP-NN, PSO-RBF and Hybrid-ANFIS were developed for prediction of viscosity of mixed oils. A number of 513 experimental data covering wide ranges of influencing parameters were utilized to develop the models. The accuracy of predictions of the developed models was examined by using different... 

    Accurate prediction of kinematic viscosity of biodiesels and their blends with diesel fuels

    , Article JAOCS, Journal of the American Oil Chemists' Society ; Volume 97, Issue 10 , September , 2020 , Pages 1083-1094 Mehrizadeh, M ; Nikbin Fashkacheh, H ; Zand, N ; Najafi Marghmaleki, A ; Sharif University of Technology
    Wiley-Blackwell  2020
    Abstract
    Viscosity of mixtures of biodiesels (admixtures) and mixtures of biodiesel/diesel (blends) is a important parameter for determining their combustion behavior. There is no universal and general model for prediction of viscosity of these systems at different conditions. Hence, developing simple, accurate, and general models for prediction of viscosity of these systems is of great importance. In this work, three computer-based models named multilayer perceptron neural network (MLP-NN), radial basis function optimized by particle swarm optimization (PSO-RBF), and adaptive neuro fuzzy inference system optimized by hybrid approach (Hybrid-ANFIS) were developed for prediction of viscosity of blends... 

    Micro-plasma actuator mechanisms in interaction with fluid flow for wind energy applications: Physical parameters

    , Article Physics of Fluids ; Volume 32, Issue 7 , 2020 Omidi, J ; Mazaheri, K ; Sharif University of Technology
    American Institute of Physics Inc  2020
    Abstract
    Plasma actuator is a flow control device to improve the aerodynamic performance of wind turbine blades at low airspeeds. One of the most robust numerical models for simulation of plasma actuator interaction with the fluid flow is the electrostatic model. This model is improved recently and is extensively verified by the authors. Due to the high cost of performing experimental optimizations, the optimized geometrical dimensions and materials of a plasma actuator may be sought by this numerical model. The aim of the present study is the aerodynamic enhancement of a DU21 wind turbine blade airfoil in which the effect of geometric parameters and the dielectric material is examined separately.... 

    Prediction of Joule-Thomson coefficient and inversion curve for natural gas and its components using CFD modeling

    , Article Journal of Natural Gas Science and Engineering ; Volume 83 , 2020 NabatiShoghl, S ; Naderifar, A ; Farhadi, F ; Pazuki, G ; Sharif University of Technology
    Elsevier B.V  2020
    Abstract
    In this study, three equations of state (EOS) in conjunction with computational fluid dynamics (CFD) modeling were used to predict the Joule – Thomson (JT) process behavior for natural gas and various pure gases. The JT effect is encountered in several industrial applications. The experimental determination of the JT coefficient (JTC) is complicated, and there is little gas pressure-volume-temperature (PVT) data available for estimating these JTC. Thus, the development of an efficient model to predict the JT effect in industrial processes is necessary. This study was carried out to attain a clear view of the single phase-flow of hydrocarbons and nitrogen in the JT process with CFD modeling.... 

    An experimental platform for macro-scale fluidic medium molecular communication

    , Article IEEE Transactions on Molecular, Biological, and Multi-Scale Communications ; 2020 Khaloopour, L ; Nasiri Kenari, M ; Rouzegar, S. V ; Azizi, A ; Hosseinian, A ; Farahnak Ghazani, M ; Bagheri, N ; Mirmohseni, M ; Arjmandi, H ; Mosayebi, R ; Sharif University of Technology
    Institute of Electrical and Electronics Engineers Inc  2020
    Abstract
    The macro-scale molecular communication (MC) recently received considerable attention because of its potential applications. Since most of the experimental research in MC focuses on the micro-scale cases, it is necessary to study and implement experiments to investigate the concept’s feasibility as well as to validate the models and parameters. In this paper, a macro-scale flow-based MC platform with fluidic medium is developed, in a semi-cylindrical channel with laminar flow condition. The transmission medium we consider is water in the plexi pipe, a transmitter releases Hydrochloric acid molecules into this pipe and a chemical sensor is used as the receiver. We propose an LTI model for the... 

    Controlling the properties of TiO2 nanoparticles generated by nanosecond laser ablation in liquid solution

    , Article Laser Physics ; Volume 28, Issue 8 , 2018 ; 1054660X (ISSN) Pashazadeh, M ; Irani, E ; Golzan, M. M ; Sadighi Bonabi, R ; Sharif University of Technology
    Institute of Physics Publishing  2018
    Abstract
    Laser ablation of titanium target in distilled water for synthesis of colloidal nanoparticles is studied both experimentally and theoretically. The effects of laser parameters such as wavelength, pulse energy, fluence and shot numbers on the ablation rate and size properties of colloidal nanoparticles are investigated. The experimental approach addresses the interesting issue for finding the optimal main experimental parameters of laser ablation. The theoretical thermal model of nanosecond pulsed laser ablation is developed to visualize the evolution of temperature distributions and ablation depth. The simulation result of ablation depth has been compared with the experimental result... 

    Effect of initial surface treatment on shot peening residual stress field: analytical approach with experimental verification

    , Article International Journal of Mechanical Sciences ; Volume 137 , 2018 , Pages 171-181 ; 00207403 (ISSN) Sherafatnia, K ; Farrahi, G. H ; Mahmoudi, A. H ; Sharif University of Technology
    Elsevier Ltd  2018
    Abstract
    Shot peening is the most common surface treatment employed to enhance the fatigue performance of structural metallic materials and often carried out after other surface treatments. This paper mainly focuses on the effects of initial conditions of surface such as initial stress filed and hardness profile on shot peening residual stress field. The residual stress distribution induced by shot peening is obtained using Hertzian contact theory and elastic–plastic evaluation after yielding occurred during impingement and rebound of shots. Elastic plastic calculations are performed using different hardening models considering Bauschinger effect. The present model is able to predict redistribution... 

    Modeling and simulation of barite deposition in an annulus space of a well using CFD

    , Article Journal of Petroleum Science and Engineering ; Volume 161 , 2018 , Pages 476-496 ; 09204105 (ISSN) Movahedi, H ; Shad, S ; Beagom Mokhtari Hosseini, Z ; Sharif University of Technology
    Elsevier B.V  2018
    Abstract
    In drilling industry, barite particles settling and barite sag as a major problem can potentially impose significant operational issues. Static conditions, in which well undergoes an extended shut-in period, could occur during different drilling and completion operations such fishing operation, tripping, and logging. Despite its importance, such phenomenon is not well understood yet. To avoid issues related to barite settlement and barite sag, a good understanding of the impact of different drilling parameters on barite settlement and sag phenomenon is required. Recently, the mathematical formulation and modeling of settlement and sag processes have gained more attention. In order to better... 

    Water hammer in a horizontal rectangular conduit containing air-water two-phase slug flow

    , Article Journal of Hydraulic Engineering ; Volume 142, Issue 3 , 2016 ; 07339429 (ISSN) Eyhavand Koohzadi, A ; Borghei, S. M ; Kabiri Samani, A ; Sharif University of Technology
    American Society of Civil Engineers (ASCE)  2016
    Abstract
    The study of water hammer in air-water, two-phase flows in hydraulic structures such as pressurized pipelines and tunnels, siphons, culverts, and junctions is of great importance for design purposes. Water hammer if combined with a periodic slug flow would lead to severe periodic transient pressure fluctuations inside the conduit. Laboratory experiments have been conducted to investigate waterhammer pressure inside a horizontal rectangular conduit carrying a two-phase, air-water slug flow. Tests were performed in an experimental apparatus comprising a 6.8-m-long transparent pipeline 0.06 m wide and 0.1 m high. By rapidly closing a control gate at the end of the conduit, propagating pressure... 

    Modeling and experimental study on friction stir welding of artificially aged AA2017 plates

    , Article Materials and Manufacturing Processes ; Volume 28, Issue 6 , 2013 , Pages 683-688 ; 10426914 (ISSN) Mirjalili, A ; Serajzadeh, S ; Jamshidi Aval, H ; Kokabi, A. H ; Sharif University of Technology
    2013
    Abstract
    Thermo-mechanical responses, developed microstructure, and mechanical properties in friction stir welding (FSW) of artificially aged AA2017 plates were investigated. A finite element analysis was first employed to evaluate hot deformation behavior of the alloy during welding. Also, hardness, yield strength, and microstructure of the welded alloy were examined using the results of the model and experimental testing. It was found that strain and temperature fields during welding are asymmetrically distributed and the maximum temperature locates in advancing side. Furthermore, considerable grain refinement is observed in the stir zone where recrystallized grains in the range of 3 to 8 m are... 

    Effects of anti-vortex plates on air entrainment by free vortex

    , Article Scientia Iranica ; Volume 20, Issue 2 , 2013 , Pages 251-258 ; 10263098 (ISSN) Kabiri Samani, A. R ; Borghei, S. M ; Sharif University of Technology
    2013
    Abstract
    Free surface vortex and air entrainment are not favorable experiences in hydropower and pumping projects. While complete omission of vortex and air entrainment is not always cost effective, partially weakened free-surface vortex flow is more economical and practical. Hence, in this study, a comprehensive set of experiments were conducted to partially reduce vortex strength and air entrainment at vertical pipe intakes, using rectangular anti-vortex plates. This phenomenon results in increasing water discharge compared with a corresponding free-surface vortex for the same water depth, i.e. in cases of shaft spillway. The plates were used as singles and in pairs and placed symmetrically and... 

    Strain gradient beam element

    , Article Finite Elements in Analysis and Design ; Volume 68 , June , 2013 , Pages 63-75 ; 0168874X (ISSN) Kahrobaiyan, M. H ; Asghari, M ; Ahmadian, M. T ; Sharif University of Technology
    2013
    Abstract
    The classical continuum theory is neither able to accurately model the mechanical behavior of micro/nano-scale structures nor capable of justifying the size-dependent behavior observed in these structures; so the non-classical continuum theories such as the strain gradient theory have been emerged and developed. In order to enable the finite element method (FEM) to more accurately deal with the problems in micro/nano-scale structures, a size-dependent Euler-Bernoulli beam element is developed based on the strain gradient theory. Compared to the classical Euler-Bernoulli beam element, the nodal displacement vector of the new Euler-Bernoulli beam element has an additional component, i.e. the... 

    An experimental investigation of the effect of fracture dip angle on oil recovery and drainage rate in free fall gravity drainage in fractured reservoirs using a glass micromodel (A pore level investigation)

    , Article Petroleum Science and Technology ; Volume 31, Issue 4 , 2013 , Pages 355-367 ; 10916466 (ISSN) Zareh, N ; Kharrat, R ; Ghazanfari, M ; Sharif University of Technology
    2013
    Abstract
    Gravity drainage is the main production mechanism in the gas invaded zone in naturally fractured reservoirs. However, there are large ambiguities and complexities, resulting from the dynamic of oil depletion from matrix blocks toward the fracture network. Visualization of drained oil at pore scale using glass micromodels provides the opportunity to better understand the effects of different parameters which might affect oil recovery from fractured reservoirs. In this work a micromodel apparatus generated by laser etching is used to perform some gravity drainage tests on the network patterns. The experiments were performed on double block systems using crude oil. The block to block... 

    Anticorrosion properties of smart coating based on polyaniline nanoparticles/epoxy-ester system

    , Article Progress in Organic Coatings ; Volume 75, Issue 4 , 2012 , Pages 502-508 ; 03009440 (ISSN) Arefinia, R ; Shojaei, A ; Shariatpanahi, H ; Neshati, J ; Sharif University of Technology
    2012
    Abstract
    In this study, the anticorrosive effect of dodecylbenzenesulfonicacid-doped polyaniline nanoparticles [n-PANI (DBSA)] as a conductive polymer was investigated using electrochemical impedance spectroscopy (EIS) and X-ray photoelectron spectroscopy (XPS) techniques. Initially, the n-PANI (DBSA) were successfully synthesized via inverse microemulsion polymerization leading to the spherical nanoparticles with an average diameter less than 30 nm. Two coating systems including 1 wt% n-PANI(DBSA) blended epoxy ester (n-PANI(DBSA)/EPE) and neat epoxy ester (EPE) were coated on the carbon steal substrate. The anticorrosion performance of the prepared coatings was studied using EIS measurement in 3.5%... 

    Asphaltene deposition in carbonate rocks: Experimental investigation and numerical simulation

    , Article Energy and Fuels ; Volume 26, Issue 10 , June , 2012 , Pages 6186-6199 ; 08870624 (ISSN) Kord, S ; Miri, R ; Ayatollahi, S ; Escrochi, M ; Sharif University of Technology
    2012
    Abstract
    Oil production from asphaltenic oil reservoirs has always encountered difficulties, such as plugging and unpredictable fluid properties. To physically recognize the aspects of asphaltene deposition, several dynamic and static asphaltene deposition tests were designed and performed on one of the giant south Iranian oil reservoirs using dead and live crude oil and real core samples. Moreover, the effects of fluid velocity on the extent of damage were investigated. It was found that surface deposition of asphaltene particles is the main source of formation damages in the porous media and the resulting permeability impairment obeys an exponential behavior. All of the experiments confirm that... 

    Macroscopic recovery mechanisms of in-situ combustion process in heavy oil fractured systems: Effect of fractures geometrical properties and operational parameters

    , Article Society of Petroleum Engineers - SPE EOR Conference at Oil and Gas West Asia 2012, OGWA - EOR: Building Towards Sustainable Growth ; Volume 2 , 2012 , Pages 593-617 ; 9781622760473 (ISBN) Fatemi, S. M ; Kharrat, R ; Vossoughi, S ; Ghotbi, C ; Sharif University of Technology
    SPE  2012
    Abstract
    The In-Situ Combustion (ISC) as a thermal EOR process has been studied deeply in heavy oil reservoirs and is a promising method for certain non-fractured sandstones. However, its feasibility in fractured carbonates remained questionable. The aim of the present work was to understand the recovery mechanisms of ISC in fractured models and to evaluate the effect of fractures geometrical properties such as orientation, density, location and networking on the ISC recovery performance. Combustion parameters of a fractured low permeable carbonate heavy oil reservoir in Middle East called KEM; applied to simulation study. Simulator has been validated with KEM combustion tube experimental data and... 

    Bubble size distribution in two-dimensional gas-solid fluidized beds

    , Article Industrial and Engineering Chemistry Research ; Volume 51, Issue 18 , 2012 , Pages 6571-6579 ; 08885885 (ISSN) Movahedirad, S ; Molaei Dehkordi, A ; Banaei, M ; Deen, N. G ; Van Sint Annaland, M ; Kuipers, J. A. M ; Sharif University of Technology
    2012
    Abstract
    In this article, the digital image analysis (DIA) technique has been used to study the bubble size and bubble size distribution evolution in a pseudo-two-dimensional gas-solid fluidized bed. In addition, a numerical discrete bubble model (DBM) based on the bubble-bubble interactions was developed and the model predictions were compared with the experimental data. The developed model can predict the bubble size and bubble size distribution through the bed height and the lateral distribution of bubbles. Comparison between model predictions and the result of DIA measurements shows that bubble breakage has a significant effect on the bubble size distribution especially at heights far from the... 

    Discrete bubble model for prediction of bubble behavior in 3D fluidized beds

    , Article Chemical Engineering and Technology ; Volume 35, Issue 5 , 2012 , Pages 929-936 ; 09307516 (ISSN) Movahedirad, S ; Ghafari, M ; Dehkordi, A. M ; Sharif University of Technology
    2012
    Abstract
    A discrete bubble model has been developed taking into account multiple bubble-bubble interactions and a delayed coalescence method. The obtained simulation results were compared with experimental data reported in literature. The simulation results predicted by the developed model indicate clearly that the multiple interactions of bubbles lead to more reasonable results than those predicted by a binary interaction model. In addition, two types of interaction models were applied and predicted results were compared. The frequency of gas bubbles passing through the bed cross section versus bed height follows the same trend as the experimental data. A new modified discrete bubble model has been...