Loading...
Search for: model-uncertainties
0.009 seconds
Total 59 records

    A comprehensive review on uncertainty modeling techniques in power system studies

    , Article Renewable and Sustainable Energy Reviews ; Volume 57 , 2016 , Pages 1077-1089 ; 13640321 (ISSN) Aien, M ; Hajebrahimi, A ; Fotuhi Firuzabad, M ; Sharif University of Technology
    Elsevier Ltd 
    Abstract
    As a direct consequence of power systems restructuring on one hand and unprecedented renewable energy utilization on the other, the uncertainties of power systems are getting more and more attention. This fact intensifies the difficulty of decision making in the power system context; therefore, the uncertainty analysis of the system performance seems necessary. Generally, uncertainties in any engineering system study can be represented probabilistically or possibilistically. When sufficient historical data of the system variables is not available, a probability density function (PDF) might not be defined, they must be represented in another manner i.e. using possibilistic theory. When some... 

    Adaptive 2D-path optimization of steerable bevel-tip needles in uncertain model of brain tissue

    , Article 2009 WRI World Congress on Computer Science and Information Engineering, CSIE 2009, Los Angeles, CA, 31 March 2009 through 2 April 2009 ; Volume 5 , 2009 , Pages 254-260 ; 9780769535074 (ISBN) Sadati, N ; Torabi, M ; Sharif University of Technology
    2009
    Abstract
    Although there are many works in which path planning of robots is studied, but path planning of the bevel-tip needles with highly flexible body is different and difficult due to unique properties of soft tissues. Real soft tissues are nonhomogeneously elastic and uncertainly deformable and hence, during needle motions the planned path changes unknowingly. In this paper, a novel adaptive path planning of bevel-tip needles inside the uncertain brain tissue is presented. The proposed approach is based on minimization of a Lyapanov energy function used as the cost function which consists of 6 partial costs: path length, number of changes in bevel direction, tissue deformation, horizontal and... 

    Adaptive critic-based neurofuzzy controller for the steam generator water level

    , Article IEEE Transactions on Nuclear Science ; Volume 55, Issue 3 , 2008 , Pages 1678-1685 ; 00189499 (ISSN) Fakhrazari, A ; Boroushaki, M ; Sharif University of Technology
    2008
    Abstract
    In this paper, an adaptive critic-based neurofuzzy controller is presented for water level regulation of nuclear steam generators. The problem has been of great concern for many years as the steam generator is a highly nonlinear system showing inverse response dynamics especially at low operating power levels. Fuzzy critic-based learning is a reinforcement learning method based on dynamic programming. The only information available for the critic agent is the system feedback which is interpreted as the last action the controller has performed in the previous state. The signal produced by the critic agent is used alongside the backpropagation of error algorithm to tune online conclusion parts... 

    Adaptive model predictive control-based attitude and trajectory tracking of a VTOL aircraft

    , Article IET Control Theory and Applications ; Volume 12, Issue 15 , 2018 , Pages 2031-2042 ; 17518644 (ISSN) Emami, S. A ; Rezaeizadeh, A ; Sharif University of Technology
    Institution of Engineering and Technology  2018
    Abstract
    A novel adaptive model-based predictive controller for attitude and trajectory tracking of a vertical take-off and landing(VTOL) aircraft in the simultaneous presence of model uncertainties and external disturbances is introduced in this study. Animportant challenge of designing the model-based controllers is developing an accurate model, especially in the presence ofmodel uncertainties. In this study, first, the nominal model of a ducted-fan air vehicle, which is a multi-input multi-outputnonlinear system with non-minimum phase behaviour, is given as the test case of this research. After that, two modified robustand adaptive model predictive controllers are proposed for tracking a... 

    Adaptive robust control of fractional-order swarm systems in the presence of model uncertainties and external disturbances

    , Article IET Control Theory and Applications ; Volume 12, Issue 7 , 2018 , Pages 961-969 ; 17518644 (ISSN) Naderi Soorki, M ; Tavazoei, M. S ; Sharif University of Technology
    Institution of Engineering and Technology  2018
    Abstract
    This study investigates the asymptotic swarm stabilisation of fractional-order swarm systems in the presence of two different kinds of model uncertainties and external disturbances while the upper bound of the uncertainties is a linear function of pseudo-states norms with unknown coefficients. To this end, first a fractional-integral sliding manifold is constructed and then an adaptive-robust sliding mode controller is designed to guarantee the asymptotic swarm stability in a fractional-order linear time-invariant swarm system. The stability analysis of the proposed control system is done based on the Lyapunov stability theorem. Using the proposed controller, the coefficients of the upper... 

    Adaptive synchronization of two different uncertain chaotic systems with unknown dead-zone input nonlinearities

    , Article JVC/Journal of Vibration and Control ; Volume 26, Issue 21-22 , 2020 , Pages 1956-1968 Heidarzadeh, S ; Shahmoradi, S ; Shahrokhi, M ; Sharif University of Technology
    SAGE Publications Inc  2020
    Abstract
    The present work addresses chaos synchronization between two different general chaotic systems with parametric and structural uncertainties, subject to external disturbances and input dead-zone nonlinearities. In this regard, a novel robust controller has been designed that guarantees asymptotic stability of synchronization errors and boundedness of all closed-loop signals. One advantage of the proposed controller over the existing control algorithms is using only one update law for estimating the structural uncertainties, external disturbances, and unknown characteristics of the dead-zone nonlinearities, which reduces the computational burden considerably. The designed controller is... 

    A geometric approach to fault detection and isolation in robotic manipulators

    , Article Proceedings of the IEEE Conference on Decision and Control, 17 December 2018 through 19 December 2018 ; Volume 2018-December , 2019 , Pages 391-396 ; 07431546 (ISSN); 9781538613955 (ISBN) Karami, S ; Namvar, M ; Sharif University of Technology
    Institute of Electrical and Electronics Engineers Inc  2019
    Abstract
    We present a geometric approach for fault detection and isolation (FDI) in robotic manipulators in presence of model uncertainty. A systematic procedure is introduced for representing robotic system model being affine with respect to faults and disturbances. The proposed residual generator has smooth dynamics with freely selectable functions and it does not require high gains or threshold adjustment for the FDI purpose. No assumption on amplitude of faults and their rate is used. The solvability conditions for the FDI problem lead to a quotient observable subspace unaffected by all unknown inputs except the faults. Simulation example demonstrates localization of faults in presence of... 

    A hybrid storage-wind virtual power plant (VPP) participation in the electricity markets: A self-scheduling optimization considering price, renewable generation, and electric vehicles uncertainties

    , Article Journal of Energy Storage ; Volume 25 , 2019 ; 2352152X (ISSN) Alahyari, A ; Ehsan, M ; Mousavizadeh, M ; Sharif University of Technology
    Elsevier Ltd  2019
    Abstract
    The fast growth of technologies most of which depend on natural sources of energy has resulted in a huge consumption of fossil fuels. In this regard, many solutions have been suggested to alleviate the side effects such as air pollution and global warming. Among these solutions, mobile storages like electric vehicles (EVs) and renewable generations, have grown significantly due to being more applicable. But uncoordinated operation and uncertain nature of these distributed energy resources (DERs) can bring forward new challenges and issues to the operators of power system. Thus, in many cases it is more efficient to co-operate them in a hybrid system. In this study, we address a virtual power... 

    A new stochastic oil spill risk assessment model for Persian Gulf: Development, application and evaluation

    , Article Marine Pollution Bulletin ; Volume 145 , 2019 , Pages 357-369 ; 0025326X (ISSN) Amir Heidari, P ; Raie, M ; Sharif University of Technology
    Elsevier Ltd  2019
    Abstract
    Persian Gulf is a semi-enclosed highly saline reverse estuary that is exposed to the risk of oil spills in offshore oil and gas activities. In the early 2000s, a specific version of NOAA's Trajectory Analysis Planner (TAP II) was developed for Persian Gulf to assist regional organizations in preparing oil spill contingency plans. In this research, a new stochastic model is developed to cover the limitations of TAP II. The new model is based on an advanced trajectory model, which is now linked with high resolution spatiotemporal data of the wind and sea current. In a case study, the developed model is compared with TAP II, and evaluated by multiple tests designed for analysis of uncertainty,... 

    A novel robust decentralized adaptive fuzzy control for swarm formation of multiagent systems

    , Article IEEE Transactions on Industrial Electronics ; Volume 59, Issue 8 , 2012 , Pages 3124-3134 ; 02780046 (ISSN) Ranjbar-Sahraei, B ; Shabaninia, F ; Nemati, A ; Stan, S. D ; Sharif University of Technology
    IEEE  2012
    Abstract
    In this paper, a novel decentralized adaptive control scheme for multiagent formation control is proposed based on an integration of artificial potential functions with robust control techniques. Fully actuated mobile agents with partially unknown models are considered, where an adaptive fuzzy logic system is used to approximate the unknown system dynamics. The robust performance criterion is used to attenuate the adaptive fuzzy approximation error and external disturbances to a prescribed level. The advantages of the proposed controller can be listed as robustness to input nonlinearity, external disturbances, and model uncertainties, and applicability on a large diversity of autonomous... 

    A robust kalman filter-based approach for SoC estimation of lithium-ION batteries in smart homes

    , Article Energies ; Volume 15, Issue 10 , 2022 ; 19961073 (ISSN) Rezaei, O ; Habibifar, R ; Wang, Z ; Sharif University of Technology
    MDPI  2022
    Abstract
    Battery energy systems are playing significant roles in smart homes, e.g., absorbing the uncertainty of solar energy from root-top photovoltaic, supplying energy during a power outage, and responding to dynamic electricity prices. For the safe and economic operation of batteries, an optimal battery-management system (BMS) is required. One of the most important features of a BMS is state-of-charge (SoC) estimation. This article presents a robust central-difference Kalman filter (CDKF) method for the SoC estimation of on-site lithium-ion batteries in smart homes. The state-space equations of the battery are derived based on the equivalent circuit model. The battery model includes two RC... 

    Assist-as-needed policy for movement therapy using telerobotics-mediated therapist supervision

    , Article Control Engineering Practice ; Volume 101 , 2020 Sharifi, M ; Behzadipour, S ; Salarieh, H ; Tavakoli, M ; Sharif University of Technology
    Elsevier Ltd  2020
    Abstract
    In this paper, a new impedance-based teleoperation strategy is proposed for assist-as-needed tele-rehabilitation via a multi-DOF telerobotic system having patient–master and therapist–slave interactions. Unlike a regular teleoperation system and as the main contribution of this work to minimize the therapist's movements, the therapist's hand only follows the patient's deviation from the target trajectory. Also it provides a better perception of the patient's problems in motor control to the therapist The admissible deviation of the patient's limb from a reference target trajectory is governed by an impedance model responding to both patient's and therapist's interaction forces. As the other... 

    Closed-loop powered-coast-powered predictive guidance for spacecraft rendezvous with non-singular terminal sliding mode steering

    , Article Acta Astronautica ; Volume 166 , 2020 , Pages 507-523 Kasaeian, S. A ; Ebrahimi, M ; Assadian, N ; Sharif University of Technology
    Elsevier Ltd  2020
    Abstract
    The present study aims to present a guidance algorithm based on the relative motion prediction for orbital rendezvous, in which a coast phase is allowed between two powered phases. In both powered phases, the solution of the Hill-Clohessy-Wiltshire equations is used to find the required state variables at each time instant. To track the required trajectory and compensate for any orbital perturbations and uncertainties, a non-singular terminal sliding mode method is utilized as the steering law. Then, the finite time convergence of the state variables is mathematically proved. In addition, the starting time of the second powered phase is adapted to perturbations and uncertainties by another... 

    Comprehensive fuzzy multi-objective multi-product multi-site aggregate production planning decisions in a supply chain under uncertainty

    , Article Applied Soft Computing Journal ; Volume 37 , 2015 , Pages 585-607 ; 15684946 (ISSN) Gholamian, N ; Mahdavi, I ; Tavakkoli-Moghaddam, R ; Mahdavi Amiri, N ; Sharif University of Technology
    Elsevier Ltd  2015
    Abstract
    The main focus of this paper is to develop a model considering some significant aspects of real-world supply chain production planning approved by industries. To do so, we consider a supply chain (SC) model, which contains multiple suppliers, multiple manufactures and multiple customers. This model is formulated as a fuzzy multi objective mixed-integer nonlinear programming (FMOMINLP) to address a comprehensive multi-site, multi-period and multi-product aggregate production planning (APP) problem under uncertainty. Four conflicting objectives are considered in the presented model simultaneously, which are (i) to minimize the total cost of the SC (production costs, workforce wage,... 

    Control of stochastic chaos using sliding mode method

    , Article Journal of Computational and Applied Mathematics ; Volume 225, Issue 1 , 2009 , Pages 135-145 ; 03770427 (ISSN) Salarieh, H ; Alasty, A ; Sharif University of Technology
    2009
    Abstract
    Stabilizing unstable periodic orbits of a deterministic chaotic system which is perturbed by a stochastic process is studied in this paper. The stochastic chaos is modeled by exciting a deterministic chaotic system with a white noise obtained from derivative of a Wiener process which eventually generates an Ito differential equation. It is also assumed that the chaotic system being studied has some model uncertainties which are not random. The sliding mode controller with some modifications is used for stochastic chaos suppression. It is shown that the system states converge to the desired orbit in such a way that the error covariance converges to an arbitrarily small bound around zero. As... 

    Design of a fractional order PID controller for an AVR using particle swarm optimization

    , Article Control Engineering Practice ; Volume 17, Issue 12 , 2009 , Pages 1380-1387 ; 09670661 (ISSN) Zamani, M ; Karimi Ghartemani, M ; Sadati, N ; Parniani, M ; Sharif University of Technology
    Abstract
    Application of fractional order PID (FOPID) controller to an automatic voltage regulator (AVR) is presented and studied in this paper. An FOPID is a PID whose derivative and integral orders are fractional numbers rather than integers. Design stage of such a controller consists of determining five parameters. This paper employs particle swarm optimization (PSO) algorithm to carry out the aforementioned design procedure. PSO is an advanced search procedure that has proved to have very high efficiency. A novel cost function is defined to facilitate the control strategy over both the time-domain and the frequency-domain specifications. Comparisons are made with a PID controller and it is shown... 

    Design of an RMPC with a time-varying terminal constraint set for tracking problem

    , Article International Journal of Robust and Nonlinear Control ; Volume 26, Issue 12 , 2016 , Pages 2623-2642 ; 10498923 (ISSN) Razi, M ; Haeri, M ; Sharif University of Technology
    John Wiley and Sons Ltd  2016
    Abstract
    This paper presents a robust model predictive control algorithm with a time-varying terminal constraint set for systems with model uncertainty and input constraints. In this algorithm, the nonlinear system is approximated by a linear model where the approximation error is considered as an unstructured uncertainty that can be represented by a Lipschitz nonlinear function. A continuum of terminal constraint sets is constructed off-line, and robust stability is achieved on-line by using a variable control horizon. This approach significantly reduces the computational complexity. The proposed robust model predictive controller with a terminal constraint set is used in tracking set-points for... 

    Design of a robust model predictive controller with reduced computational complexity

    , Article ISA Transactions ; Volume 53, Issue 6 , 1 November , 2014 , Pages 1754-1759 ; ISSN: 00190578 Razi, M ; Haeri, M ; Sharif University of Technology
    Abstract
    The practicality of robust model predictive control of systems with model uncertainties depends on the time consumed for solving a defined optimization problem. This paper presents a method for the computational complexity reduction in a robust model predictive control. First a scaled state vector is defined such that the objective function contours in the defined optimization problem become vertical or horizontal ellipses or circles, and then the control input is determined at each sampling time as a state feedback that minimizes the infinite horizon objective function by solving some linear matrix inequalities. The simulation results show that the number of iterations to solve the problem... 

    Evaluating the uncertainty of urban flood model using glue approach

    , Article Urban Water Journal ; Volume 19, Issue 6 , 2022 , Pages 600-615 ; 1573062X (ISSN) Kobarfard, M ; Fazloula, R ; Zarghami, M ; Akbarpour, A ; Sharif University of Technology
    Taylor and Francis Ltd  2022
    Abstract
    This study is an attempt to investigate and analyze uncertainty through the Glue method in parts of Tabriz, Iran, using the SWMM urban flood model. In order to quantify the uncertainty, the initial range of input parameters including curve number, impenetrability percentage, penetrability level’s coarseness coefficient, and impenetrability level’s coarseness coefficient are defined and the GLUE algorithm is used to conduct primary sampling operation from parametric space using Latin hypercube sampling method. Considering the simulation results and the observed values of synchronized events, about %20 of the total outputs and generated parameters series have been excluded as acceptable... 

    Fault diagnosis in robot manipulators in presence of modeling uncertainty and sensor noise

    , Article Proceedings of the IEEE International Conference on Control Applications, 8 July 2009 through 10 July 2009, Saint Petersburg ; 2009 , Pages 1750-1755 ; 9781424446025 (ISBN) Mohseni, S ; Namvar, M ; Sharif University of Technology
    Abstract
    In this paper, we introduce a new approach to fault detection and isolation for robot manipulators. Our technique is based on using a new simplified Euler-Lagrange (EL) equation that reduces complexity of the proposed fault detection method. The proposed approach isolates the faults and is capable of handling the uncertainty in manipulator gravity vector. It is shown that the effect of uncalibrated torque sensor measurement is asymptotically rejected in the detection process. A simulation example is presented to illustrate the results. © 2009 IEEE