Loading...
Search for: monomer
0.008 seconds
Total 118 records

    Mechanical Properties of Actin Assemblies

    , M.Sc. Thesis Sharif University of Technology Ghodsi, Hossein (Author) ; Kazemi, Mohammad Taghi (Supervisor)
    Abstract
    Actin filaments are the most abundant component of the cellular cytoskeleton and provide shape for the most eukaryotic cells. Actin constitutes 1-10% of the total protein in most cells and is present at even higher concentrations in muscle cells. The functions of actin are directly connected to its mechanical properties, therefore both experimental and computational understanding of the mechanical properties of actin filaments are essential to elucidate their functions in cells and muscles. Actin exists in two forms, actin monomers (G-actin) and actin filaments (F-actin), which have continuous polymerization and depolymerization processes. In the polymerization process, different... 

    Synthesis of Bone graft Substitute for Clinical Applications

    , M.Sc. Thesis Sharif University of Technology Khodabakhshi Tabar Ahangar, Zahra (Author) ; Abdekhodaie, Mohammad Jafar (Supervisor)
    Abstract
    The natural tissue of the bones consists of organic and inorganic parts. The bone mineral part contains calcium phosphate and its organic part is mainly of collagen fibers. The combination of these fibers and calcium phosphate makes the bone flexible and resistant to stresses. Many conditions, including osteoporosis and crashes, lead to fractures and cavities in bone. Bone cements are the most used materials used in orthopedic surgeries and spinal cord.The purpose of this study was to synthesis acrylic bone cement with properties determined by ASTM F 451 and Iso5833 for orthopedic applications, including joint replacement. Polymethyl methacrylate polymer was synthesized as the main component... 

    Synthesis and Investigation of Properties of Intumescent Fireproofing Paint with Oxide Nanoparticles

    , M.Sc. Thesis Sharif University of Technology Hasannezhad, Asghar (Author) ; Dolati, Abolghasem (Supervisor)
    Abstract
    Intumescent paints are coatings designed for passive fire protection of steel and other materials. In this research, the performance of water-based intumescent coating with vinyl acetate resin for cellulose fire conditions and epoxy-based coatings for hydrocarbon fire conditions has been investigated. The fire resistance of coatings was evaluated according to the ASTM E119 standard for water-based coating and UL1709 standard for epoxy-based intumescent coating. For the water-based intumescent coating, the expansion of char was investigated in a furnace with a temperature of 800°C for 1 hour. Thermal decomposition was studied by thermogravimetric analysis (TGA). Also, flammability was... 

    Simulation and Control of Particle Size Distribution in a Continuous Emulsion Polymerization Reactor

    , M.Sc. Thesis Sharif University of Technology Barazandegan, Melissa (Author) ; Shahrokhi, Mohammad (Supervisor)
    Abstract
    In this work, a comprehensive dynamic model has been used for vinyl acetate emulsion polymerization in a continuous reactor to predict the evolution of product particle size distribution under isothermal condition. Method of finite-volume has been applied for solving the population balance equations and the results are compared with the results obtained from moment method. Finite-volume method has been selected as a precise technique to predict sustained oscillations, which occurs in continuous emulsion polymerization. After performing sensitivity analysis and verification of system’s controllability, feed rate of surfactant and initiator have been selected as proper manipulated variables to... 

    Modified CMC: Part1-optimized synthesis of carboxymethyl cellulose-g-polyacrylonitrile

    , Article Iranian Polymer Journal (English Edition) ; Volume 14, Issue 2 , 2005 , Pages 131-138 ; 10261265 (ISSN) Zohuriaan Mehr, M. J ; Pourjavadi, A ; Sadeghi, M ; Sharif University of Technology
    2005
    Abstract
    As the first part of a continued research on conversion of carboxymethyl cellulose-sodium salt (CMC) to useful biopolymer-based materials, large numbers of cyanide functional groups were introduced onto CMC by grafting with polyacrylonitrile (PAN). The graft copolymerization reactions were carried out under nitrogen atmosphere using ceric ammonium nitrate (CAN) as an initiator. Evidence of grafting was obtained by comparing FTIR spectra of CMC and the graft copolymer as well as solubility characteristics of the products. The synthetic conditions were systematically optimized through studying the effective factors including temperature and concentrations of initiator, acrylonitrile monomer,... 

    Synthesis, characterization, and kinetic investigation of acrylic monomers derived from acetaminophen and ρ-cresol as model drug molecules

    , Article Journal of Applied Polymer Science ; Volume 100, Issue 6 , 2006 , Pages 4369-4374 ; 00218995 (ISSN) Vezvaie, M ; Taghizadeh, S. M ; Gholami, M. R ; Sharif University of Technology
    2006
    Abstract
    In this work, the synthesis, characterization, and kinetic investigation of the free-radical polymerization of 4-acetylaminobenzene propenoic ester (ABPE) and 4-methylbenzene propenoic ester (MBPE) were studied. The kinetic behaviors of ABPE and MBPE in the polymerization initiated by azobisisobutyronitrile in dimethylformamide solutions at temperatures between 50 and 120°C were investigated, and experimental and theoretical conversion-time curves were compared. Both monomers showed a polymerization ceiling temperature (T c ). Tc was calculated with experimental values of k pk1/2 with a constant concentration of 0.7 mol/L for monomers. Tc was about 141 and 131 °C for ABPE and MBPE,... 

    Modeling and sensitivity analysis of styrene monomer production process and investigation of catalyst behavior

    , Article Computers and Chemical Engineering ; Volume 40 , 2012 , Pages 1-11 ; 00981354 (ISSN) Tamsilian, Y ; Ebrahimi, A. N ; Ramazani S.A., A ; Abdollahzadeh, H ; Sharif University of Technology
    2012
    Abstract
    In this work, a fundamental kinetic model based upon the Hougen-Watson non-porosity formalism was derived and used to simulate dehydrogenation and oxidation axial flow reactors. In addition, partial pressure profiles of components during styrene production process inside porous catalyst were obtained using Dusty-Gas model. The preservation equations are adopted to calculate temperature and flow profiles in the reactors filled with iron-potassium promoted catalyst pellets. The presented mathematical model for ethylbenzene dehydrogenation consists of nonlinear simultaneous differential equations with multiple dependent variables. Simulation results such as selectivity and operating temperature... 

    The preparation and rheological investigation of polymer and hydrogel modified drilling mud

    , Article Petroleum Science and Technology ; Volume 30, Issue 10 , 2012 , Pages 1059-1068 ; 10916466 (ISSN) Tamsilian, Y ; Ramazani, S. A. A ; Khosravi, N ; Sharif University of Technology
    2012
    Abstract
    The authors carried out the study to prepare chitosan N-isopropylacrylamide hydrogel via heating and radiation processes. Properties investigation of prepared samples revealed that radiation prepared samples show higher yield and swelling ratios in comparison with the heating prepared ones. Effects of hydrogel addition to drilling mud on its important rheological properties such as apparent viscosity, plastic viscosity, and stress-strain behavior are measured. The rheological properties of hydrogel were compared with cellulosemethylcarboxyl and resins that are widely used in drilling fluid. The results demonstrate that whereas linear polymer effects on mud properties are more significant in... 

    High molecular weight polyacrylamide nanoparticles prepared by inverse emulsion polymerization: reaction conditions-properties relationships

    , Article Colloid and Polymer Science ; Volume 294, Issue 3 , 2016 , Pages 513-525 ; 0303402X (ISSN) Tamsilian, Y ; Ramazani S. A ; Shaban, M ; Ayatollahi, S ; Tomovska, R ; Sharif University of Technology
    Springer Verlag  2016
    Abstract
    High molecular weight polyacrylamide (PAM) nanoparticle dispersions are products with wide application possibilities, the most important of which is in petroleum industry such as drilling fluid and flooding agent in enhanced oil recovery. For that aim, it is necessary to achieve complete control of the final dispersion and polymer properties during the synthesis step. In this work, PAMs were synthesized by inverse emulsion polymerization of aqueous acrylamide solution in cyclohexane in the presence of emulsifier mixture of Span 20 and Span 80. We present a comprehensive study of the effects of variation of all important reaction conditions (agitation rate, reaction time and temperature,... 

    High-performance carboxylate superplasticizers for concretes: Interplay between the polymerization temperature and properties

    , Article Journal of Applied Polymer Science ; Volume 134, Issue 23 , 2017 ; 00218995 (ISSN) Tajbakhshian, A ; Saeb, M. R ; Jafari, S. H ; Najafi, F ; Khonakdar, H. A ; Ayoubi, M ; Hassanpour Asl, F ; Sharif University of Technology
    Abstract
    Polycarboxylate superplasticizers based on acrylic acid (AA) and maleic anhydride (MAn) were synthesized via free-radical copolymerization with an ethylene glycol monomer and characterized. The copolymerization temperature (ranging from 50 to 90 °C) appeared to be the key operating factor governing the chemical structure of the superplasticizers. The chemical structures of the products were analyzed by gel permeation chromatography, whereas an optimized sample was further analyzed by Fourier transform infrared spectroscopy and 1H-NMR. Superplasticizers of the AA and MAn classes were then incorporated into concrete, and their performances were measured by slump and slump loss tests, where a... 

    Novel salep-based chelating hydrogel for heavy metal removal from aqueous solutions

    , Article Polymers for Advanced Technologies ; Volume 27, Issue 8 , 2016 , Pages 999-1005 ; 10427147 (ISSN) Soleyman, R ; Pourjavadi, A ; Monfared, A ; Khorasani, Z ; Sharif University of Technology
    John Wiley and Sons Ltd 
    Abstract
    A novel optimized chelating hydrogel was synthesized via graft copolymerization of acrylamide and 2-hydroxyethyl methacrylate (as two-dentate chelating co-monomer) onto salep (a multicomponent polysaccharide obtained from dried tubers of certain natural terrestrial orchids) using N,N′-methylenebisacrylamide as a crosslinker and ammonium persulfate as an initiator. Reaction parameters (N,N′-methylenebisacrylamide and ammonium persulfate amounts as well as acrylamide/2-hydroxyethyl methacrylate weight ratio) affecting the water absorption of the chelating hydrogel were optimized using a systematic method to achieve a hydrogel with high swelling capacity as possible. Heavy metal ion adsorption... 

    Adhesion modification of polyethylenes for metallization using radiation-induced grafting of vinyl monomers

    , Article Surface and Coatings Technology ; Volume 201, Issue 16-17 , 2007 , Pages 7519-7529 ; 02578972 (ISSN) Shojaei, A ; Fathi, R ; Sheikh, N ; Sharif University of Technology
    2007
    Abstract
    The present paper demonstrates the performance of the radiation grafting technique as a chemically based surface pretreatment method to adhesion modification of polyethylene surfaces toward the metallic layer. Gamma irradiation over a dose range of 4-10 kGy is used for grafting of vinyl monomers including acrylamide (AAm) and 1-vinyl-2-pyrrolidone (NVP) onto the surface of three different polyethylenes including low density polyethylene (LDPE) and two kinds of high density polyethylenes, namely HDPE-1 and HDPE-2. The grafting yield is evaluated based on the weight increase of the samples. It is found that the grafting yield is dominated by the crystallinity of the polyethylene, so that lower... 

    Nanomechanics of actin filament: a molecular dynamics simulation

    , Article Cytoskeleton ; Volume 75, Issue 3 , March , 2018 , Pages 118-130 ; 19493584 (ISSN) Shamloo, A ; Mehrafrooz, B ; Sharif University of Technology
    John Wiley and Sons Inc  2018
    Abstract
    Actin is known as the most abundant essentially protein in eukaryotic cells. Actin plays a crucial role in many cellular processes involving mechanical forces such as cell motility, adhesion, muscle contraction, and intracellular transport. However, little is known about the mechanical properties of this protein when subjected to mechanical forces in cellular processes. In this article, a series of large-scale molecular dynamics simulations are carried out to elucidate nanomechanical behavior such as elastic and viscoelastic properties of a single actin filament. Here, we used two individual methods namely, all-atoms and coarse-grained molecular dynamics, to evaluate elastic properties of a... 

    Design of pH-responsive nanoparticles of terpolymer of poly(methacrylic acid), polysorbate 80 and starch for delivery of doxorubicin

    , Article Colloids and Surfaces B: Biointerfaces ; Volume 101 , January , 2013 , Pages 405-413 ; 09277765 (ISSN) Shalviri, A ; Chan, H. K ; Raval, G ; Abdekhodaie, M. J ; Liu, Q ; Heerklotz, H ; Wu, X. Y ; Sharif University of Technology
    2013
    Abstract
    This work focused on the design of new pH-responsive nanoparticles for controlled delivery of anticancer drug doxorubicin (Dox). Nanoparticles of poly(methacrylic acid)-polysorbate 80-grafted starch (PMAA-PS 80-g-St) were synthesized by using a one-pot method that enabled simultaneous grafting of PMAA and PS 80 onto starch and nanoparticle formation in an aqueous medium. The particles were characterized by FTIR, 1H NMR, TEM, DLS, and potentiometric titration. Dox loading and in vitro release from the nanoparticles were investigated. The FTIR and 1H NMR confirmed the chemical composition of the graft terpolymer. The nanoparticles were relatively spherical with narrow size distribution and... 

    Geometry selects highly designable structures

    , Article Journal of Chemical Physics, Woodbury, NY, United States ; Volume 113, Issue 15 , 2000 , Pages 6437-6442 ; 00219606 (ISSN) Shahrezaei, V ; Ejtehadi, M. R ; Sharif University of Technology
    American Inst of Physics  2000
    Abstract
    The designability of structures in a two-dimensional hydrophobic-polar (HP) pair contact lattice model in a wide range of intermonomer interaction parameters was studied by considering HP constraints. The designability of all structures was clarified by enumerating all sequences of length 20. Results confirm that changing the intermolecular interactions affects the structure designability and also chooses the search space of the native state but the set of HDSs is invariant  

    Preparation and characterization of UHMWPE/graphene nanocomposites using bi-supported ziegler-natta polymerization

    , Article International Journal of Polymeric Materials and Polymeric Biomaterials ; Vol. 63, issue. 16 , 2014 , p. 815-819 Shafiee, M ; Ramazani, S. A ; Sharif University of Technology
    Abstract
    Ultrahigh-molecular-weight polyethylene (UHMWPE)/graphene nanocomposites with molecular weights as high as 3 × 106 g/mol were prepared via in situ polymerization using a bi-supported Ziegler-Natta catalytic system. Effects of [Al]/[Ti] molar ratio, temperature, monomer pressure, and polymerization time on productivity of the catalyst have been investigated. Increasing [Al]/[Ti] molar ratio from 128 to 320, increased productivity from 1667 g PE/mmol Ti.h to maximum value which was 2420 g PE/mmol Ti.h. Further [Al]/[Ti] ratio decreased the productivity. Reaction temperature effect investigation reveals that the optimal activity was obtained at 60°C. the polymerization productivity increases... 

    Facile synthesis of cauliflower-like hydrophobically modified polyacrylamide nanospheres by aerosol-photopolymerization

    , Article European Polymer Journal ; Volume 83 , 2016 , Pages 323-336 ; 00143057 (ISSN) Shaban, M ; Ramazani, S. A. A ; Ahadian, M. M ; Tamsilian, Y ; Weber, A. P ; Sharif University of Technology
    Elsevier Ltd  2016
    Abstract
    Amphiphilic copolymers consist of hydrophilic and hydrophobic monomer units have attracted great technological attention recently, owing to their unique properties and their ability to stabilize various interfaces in aqueous systems. This paper presents a novel and facile approach to produce spherical polyacrylamide, polystyrene and hydrophobically modified polyacrylamide (HM-PAM), as one of the most important type of amphiphilic copolymers, using a continuous aerosol-photopolymerization for the first time. To this end, the monomer droplets were generated by an atomizer, then photopolymerization was initiated ‘‘in flight’’ by ultraviolet (UV) irradiation of the aerosol monomer droplets... 

    Synthesis and characterization of bagasse poly(methyl methacrylate) graft copolymer

    , Article Macromolecular Symposia ; Volume 274, Issue 1 , 2008 , Pages 49-54 ; 10221360 (ISSN) Sarvi, I ; Pourjavadi, A ; Noei Aghaei, M. A ; Sharif University of Technology
    2008
    Abstract
    Graft copolymerization of methyl methacrylate (MMA) was carried out on bagasse fibers in an aqueous medium using eerie ammonium nitrate (CAN) as initiator under a neutral atmosphere. In order to obtain the optimum condition for graft copolymerization, the effects of initiator concentration, temperature, time of reaction, and monomer concentration were studied. The maximum grafting percent was found to be 122%. The bagasse grafted poly(methyl methacrylate) was characterized by FTIR and its thermal behavior was characterized by TGA. Copyright © 2008 WILEY-VCH Verlag GmbH & Co. KGaA  

    Bio-based UV curable polyurethane acrylate: Morphology and shape memory behaviors

    , Article European Polymer Journal ; Volume 118 , 2019 , Pages 514-527 ; 00143057 (ISSN) Salkhi Khasraghi, S ; Shojaei, A ; Sundararaj, U ; Sharif University of Technology
    Elsevier Ltd  2019
    Abstract
    Smart bio-based shape memory polymers with high performance and fast response have the exciting potential to meet the growing need in biomedical applications. In this study, novel fast response UV-curable shape memory polyurethane acrylates (SMPUAs) comprising polycaprolactone diols (PCL-Diol), hexamethylene diisocyanate (HDI) and hydroxy-methyl methacrylate (HEMA) were synthesized by two-step bulk polymerization. Two series of PUAs with almost the same amount of hard segment content (HSC) were prepared with varying soft-segment molecular weight (2000, 3000, and 4000 g/mol) and different molar ratios of constituents. A mono-functional reactive diluent was used to control HSC and reduce the... 

    Friction reduction in a nanochannel with grafted poly(N-isopropylacrylamide) oligomers: A molecular dynamics study

    , Article Physics of Fluids ; Volume 33, Issue 5 , 2021 ; 10706631 (ISSN) Saleki, O ; Moosavi, A ; Hannani, S. K ; Sharif University of Technology
    American Institute of Physics Inc  2021
    Abstract
    Superhydrophobic surfaces have been used for reducing friction in micro- and nanochannels. In the present work, water flow between two carbon walls with nanostructures made of poly(N-isopropylacrylamide) via the molecular dynamics method has been studied. The structure of this polymer can change based on the temperature of the environment, so that by increasing the temperature the structure becomes hydrophobic. This property has been studied and the effect of multiple factors on the slip length is presented. The effects of the number of monomers in the polymer, the distance between the polymers, and the temperature on the flow field are investigated. The results reveal that the slip length...