Loading...
Search for: mouse
0.005 seconds
Total 70 records

    Antitumor effect of therapeutic HPV DNA vaccines with chitosan-based nanodelivery systems

    , Article Journal of Biomedical Science ; Vol. 21, issue. 1 , July , 2014 ; ISSN: 10217770 Tahamtan, A ; Ghaemi, A ; Gorji, A ; Kalhor, H. R ; Sajadian, A ; Tabarraei, A ; Moradi, A ; Atyabi, F ; Kelishadi, M ; Sharif University of Technology
    Abstract
    Cervical cancer is the second-most-common cause of malignancies in women worldwide, and the oncogenic activity of the human papilloma virus types (HPV) E7 protein has a crucial role in anogenital tumors. In this study, we have designed a therapeutic vaccine based on chitosan nanodelivery systems to deliver HPV-16 E7 DNA vaccine, considered as a tumor specific antigen for immunotherapy of HPV-associated cervical cancer. We have developed a Nano-chitosan (NCS) as a carrier system for intramuscular administration using a recombinant DNA vaccine expressing HPV-16 E7 (NCS-DNA E7 vaccine). NCS were characterized in vitro for their gene transfection ability. Results: The transfection of CS-pEGFP... 

    Tissue growth into three-dimensional composite scaffolds with controlled micro-features and nanotopographical surfaces

    , Article Journal of Biomedical Materials Research - Part A ; Volume 101, Issue 10 , 2013 , Pages 2796-2807 ; 15493296 (ISSN) Tamjid, E ; Simchi, A ; Dunlop, J. W. C ; Fratzl, P ; Bagheri, R ; Vossoughi, M ; Sharif University of Technology
    2013
    Abstract
    Controlling topographic features at all length scales is of great importance for the interaction of cells with tissue regenerative materials. We utilized an indirect three-dimensional printing method to fabricate polymeric scaffolds with pre-defined and controlled external and internal architecture that had an interconnected structure with macro- (400-500 μm) and micro- (∼25 μm) porosity. Polycaprolactone (PCL) was used as model system to study the kinetics of tissue growth within porous scaffolds. The surface of the scaffolds was decorated with TiO2 and bioactive glass (BG) nanoparticles to the better match to nanoarchitecture of extracellular matrix (ECM). Micrometric BG particles were... 

    Preparation and evaluation of bioactive and compatible starch based superabsorbent for oral drug delivery systems

    , Article Journal of Drug Delivery Science and Technology ; Volume 23, Issue 5 , 2013 , Pages 511-517 ; 17732247 (ISSN) Pourjavadi, A ; Ebrahimi, A. A ; Barzegar, S ; Sharif University of Technology
    2013
    Abstract
    Novel types of highly swelling hydrogels (superabsorbent) were prepared by grafting crosslinked poly acrylic acid-co-2-hydroxyethylmetacrylate (PAA-co-HEMA) chains onto starch through a free radical polymerization method. The effect of grafting variables (i.e., concentration of methylenebisacrylamide (MBA), acrylic acid/2-hydroxy methymetacrylate (AA/HEMA) weight ratio, ammonium persulfate (APS), starch, neutralization percent, were systematically optimized to achieve a hydrogel with a maximum swelling capacity. The superabsorbent (SAP) formation was confirmed by Fourier transform infrared spectroscopy (FT-IR) and scanning electron microscopy (SEM). The controlled-release behavior of... 

    Functional analyses of recombinant mouse hepcidin-1 in cell culture and animal model

    , Article Biotechnology Letters ; Volume 35, Issue 8 , August , 2013 , Pages 1191-1197 ; 01415492 (ISSN) Yazdani, Y ; Keyhanvar, N ; Kalhor, H. R ; Rezaei, A ; Sharif University of Technology
    2013
    Abstract
    Hepcidin is a peptide hormone that plays an important role in iron metabolism. We have produced a recombinant mouse hepcidin-1 by using baculovirus expression system. Its expression yield was 25 μg/ml when cell culture media were supplemented with a protease inhibitor cocktail. The recombinant mouse hepcidin-1 and synthetic human hepcidin-25 had similar effects on reducing ferroportin expression in J774A cell line and in peritoneal macrophages. However, synthetic human hepcidin-25 was more efficient than recombinant mouse hepcidin-1 in reducing iron concentration in blood circulation (p < 0.01)  

    Supramolecular polycaprolactone nanocomposite based on functionalized hydroxyapatite

    , Article Journal of Bioactive and Compatible Polymers ; Volume 27, Issue 5 , January , 2012 , Pages 467-480 ; 08839115 (ISSN) Mehmanchi, M ; Shokrollahi, P ; Atai, M ; Omidian, H ; Bagheri, R ; Sharif University of Technology
    SAGE  2012
    Abstract
    Arms bearing ureido-pyrimidinone functional groups with self-association capability (through quadruple hydrogen bonds) were successfully grafted onto hydroxyapatite nanoparticles. The supramolecularly modified nanoparticles (nHApUPy) exhibited enhanced colloidal stability compared to the original hydroxyapatite nanoparticles and were uniformly dispersed in supramolecular polycaprolactone in PCL(UPy)2/HApUPy nanocomposites at different filler loadings. The combined atomic force microscopy, mechanical, and rheological analyses confirmed a high degree of compatibility of HApUPy nanoparticles with the polymer matrix. The temperature dependence of the supramolecular structure in PCL(UPy)2/HApUPy... 

    The effect of poly(ethylene glycol) coating on colloidal stability of superparamagnetic iron oxide nanoparticles as potential MRI contrast agent

    , Article International Journal of Pharmaceutics ; Volume 433, Issue 1-2 , 2012 , Pages 129-141 ; 03785173 (ISSN) Masoudi, A ; Madaah Hosseini, H. R ; Shokrgozar, M. A ; Ahmadi, R ; Oghabian, M. A ; Sharif University of Technology
    2012
    Abstract
    Superparamganetic iron oxide-based contrast agents in magnetic resonance imaging (MRI) have offered new possibility for early detection of lymph nodes and their metastases. According to important role of nanoparticle size in biodistribution, magnetite nanoparticles coated with different polyethylene glycol (PEG) concentrations up to 10/1 PEG/iron oxide weight ratio in an ex situ manner. To predict the PEG-coated nanoparticle behavior in biological media, such as blood stream or tissue, colloidal stability evaluation was performed to estimate the coating endurance in different conditions. Accordingly, optical absorbance measurements were conducted in solutions with different values of pH and... 

    Nonparametric simulation of signal transduction networks with semi-synchronized update

    , Article PLoS ONE ; Volume 7, Issue 6 , 2012 ; 19326203 (ISSN) Nassiri, I ; Masoudi Nejad, A ; Jalili, M ; Moeini, A ; Sharif University of Technology
    2012
    Abstract
    Simulating signal transduction in cellular signaling networks provides predictions of network dynamics by quantifying the changes in concentration and activity-level of the individual proteins. Since numerical values of kinetic parameters might be difficult to obtain, it is imperative to develop non-parametric approaches that combine the connectivity of a network with the response of individual proteins to signals which travel through the network. The activity levels of signaling proteins computed through existing non-parametric modeling tools do not show significant correlations with the observed values in experimental results. In this work we developed a non-parametric computational... 

    Evaluation of radiogallium-labeled, folate-embedded superparamagnetic nanoparticles in fibrosarcoma-bearing mice

    , Article Journal of Cancer Research and Therapeutics ; Volume 8, Issue 2 , 2012 , Pages 204-208 ; 09731482 (ISSN) Hosseini Salekdeh, S. L ; Jalilian, A.R ; Yousefnia, H ; Shafaii, K ; Pouladian, M ; Mahmoudi, M ; Sharif University of Technology
    2012
    Abstract
    Context: Elevated expression of the folate receptor (FR) occurs in many human malignancies. Thus, folate targeting is widely utilized in drug delivery purposes specially using nano-radioactive agents. Aims: In this work, we report production and biological evaluation of gallium-67 labeled superparamagnetic iron oxide nanoparticles, embedded by folic acid (67 Ga-SPION-folate) complex especially in tumor-bearing mice for tumor imaging studies. Settings and Design: The structure of SPION-folate was confirmed by X-ray diffraction (XRD), transmission electron microscopy (TEM) and foureir transform infrared spectroscopy (FT-IR) analyses. The radiolabeled SPION-folate formation was confirmed by... 

    Pyrolytic carbon coating for cytocompatibility of titanium oxide nanoparticles: A promising candidate for medical applications

    , Article Nanotechnology ; Volume 23, Issue 4 , 2012 ; 09574484 (ISSN) Behzadi, S ; Imani, M ; Yousefi, M ; Galinetto, P ; Simchi, A ; Amiri, H ; Stroeve, P ; Mahmoudi, M ; Sharif University of Technology
    2012
    Abstract
    Nanoparticles for biomedical use must be cytocompatible with the biological environment that they are exposed to. Current research has focused on the surface functionalization of nanoparticles by using proteins, polymers, thiols and other organic compounds. Here we show that inorganic nanoparticles such as titanium oxide can be coated by pyrolytic carbon (PyC) and that the coating has cytocompatible properties. Pyrolization and condensation of methane formed a thin layer of pyrolytic carbon on the titanium oxide core. The formation of the PyC shell retards coalescence and sintering of the ceramic phase. Our MTT assay shows that the PyC-coated particles are cytocompatible at employed doses  

    Comparison of mouse embryo deformation modeling under needle injection using analytical Jacobian, nonlinear least square and artificial neural network techniques

    , Article Scientia Iranica ; Volume 18, Issue 6 , 2011 , Pages 1486-1491 ; 10263098 (ISSN) Abbasi, A. A ; Ahmadian, M. T ; Vossoughi, G. R ; Sharif University of Technology
    Abstract
    Analytical Jacobian, nonlinear least square and three layer artificial neural network models are employed to predict deformation of mouse embryos under needle injection, based on experimental data captured from literature. The Maximum Absolute Error (MAE), coefficient of determination ( R2), Relative Error of Prediction (REP), Root Mean Square Error of Prediction (RMSEP), NashSutcliffe coefficient of efficiency ( Ef) and accuracy factor ( Af) are used as the basis for comparison of these three models. Analytical Jacobian, nonlinear least square and ANN models have yielded the correlation coefficient of 0.9985, 0.9964 and 0.9998, respectively. The REP between the models predicted values and... 

    Deformation prediction of mouse embryos in cell injection experiment by a feedforward artificial neural network

    , Article Proceedings of the ASME Design Engineering Technical Conference, 28 August 2011 through 31 August 2011 ; Volume 2, Issue PARTS A AND B , August , 2011 , Pages 543-550 ; 9780791854792 (ISBN) Abbasi, A. A ; Ahmadian, M. T ; Vossoughi, G. R ; Sharif University of Technology
    2011
    Abstract
    In this study, neural network models have been used to predict the mechanical behaviors of mouse embryos. In addition, sensitivity analysis has been carried out to investigate the influence of the significance of input parameters on the mechanical behavior of mouse embryos. In order to reach these purposes two neural network models have been implemented. Experimental data earlier deduced-by [Flückiger, M. (2004). Cell Membrane Mechanical Modeling for Microrobotic Cell Manipulation. Diploma Thesis, ETHZ Swiss Federal Institute of Technology, Zurich, WS03/04]-were collected to obtain training and test data for the neural network. The results of these investigations show that the correlation... 

    Synthesis of new hybrid nanomaterials: Promising systems for cancer therapy

    , Article Nanomedicine: Nanotechnology, Biology, and Medicine ; Volume 7, Issue 6 , 2011 , Pages 806-817 ; 15499634 (ISSN) Adeli, M ; Kalantari, M ; Parsamanesh, M ; Sadeghi, E ; Mahmoudi, M ; Sharif University of Technology
    2011
    Abstract
    Polyrotaxanes consisting of cyclodextrin rings, polyethylene glycol axes and quantum dot (QD) stoppers were synthesized and characterized. The molecular self-assembly of polyrotaxanes led to spindlelike nano-objects whose shape, size and position were dominated by QD stoppers. Due to their well-defined molecular self-assemblies, carbohydrate backbone, high functionality and several types of functional groups together with the high luminescence yield, synthesized hybrid nanostructures were recognized as promising candidates for biomedical applications. The potential applications of the molecular self-assemblies as drug-delivery systems was investigated by conjugation of doxorubicin (DOX) to... 

    Design and Synthesis of Novel Polyglycerol Hybrid Nanomaterials for Potential Applications in Drug Delivery Systems

    , Article Macromolecular Bioscience ; Volume 11, Issue 3 , NOV , 2011 , Pages 383-390 ; 16165187 (ISSN) Zarrabi, A ; Adeli, M ; Vossoughi, M ; Shokrgozar, M. A ; Sharif University of Technology
    2011
    Abstract
    The synthesis of a new drug delivery system based on hybrid nanomaterials containing a β-CD core and hyperbranched PG is described. Conjugating PG branches onto β-CD not only increases its water solubility but also affects its host/guest properties deeply. It can form molecular inclusion complexes with small hydrophobic guest molecules such as ferrocene or FITC with reasonable release. In addition, the achievable payloads are significantly higher as for carriers such as hyperbranched PGs. Short-term in vitro cytotoxicity and hemocompatibility tests on L929 cell lines show that the hybrid nanomaterial is highly biocompatible. Due to their outstanding properties, β-CD-g-PG hybrid nanomaterials... 

    Preparation and biological evaluation of radiolabeled-folate embedded superparamagnetic nanoparticles in wild-type rats

    , Article Journal of Radioanalytical and Nuclear Chemistry ; Volume 287, Issue 1 , January , 2011 , Pages 119-127 ; 02365731 (ISSN) Jalilian, A. R ; Hosseini Salekdeh, S. L ; Mahmoudi, M ; Yousefnia, H ; Majdabadi, A ; Pouladian, M ; Sharif University of Technology
    2011
    Abstract
    In this study, superparamagnetic iron oxide nanoparticles (SPION) embedded by folic acid (SPION-folate) were prepared by a modified co-precipitation method. The structure, size, morphology, magnetic property and relaxivity of the SPION-folate were characterized systematically by means of XRD, VSM, HRSEM and TEM and the interaction between folate and iron oxide (Fe3O 4) was characterized by FT-IR. The particle size was shown to be ≈5-10 nm. To ensure biocompatibility, the interaction of these SPION with mouse connective tissue cells (adhesive) was investigated using an MTT assay. Consequently, gallium-67 labeled nanoparticles ([67Ga]-SPION-folate) were prepared using 67Ga with a high labeling... 

    Polyrotaxane capped quantum dots as new candidates for cancer diagnosis and therapy

    , Article Journal of Nanostructured Polymers and Nanocomposites ; Volume 7, Issue 1 , 2011 , Pages 18-31 ; 17904439 (ISSN) Sarabi, R. S ; Sadeghi, E ; Hosseinkhani, H ; Mahmoudi, M ; Kalantari, M ; Adeli, M ; Sharif University of Technology
    2011
    Abstract
    Molecular self-assembly of cadmium selenide quantum dots-end-capped polyrotaxane hybrid nanostructures (PRCdSe QDs) was led to a new type of core-shell hybrid nanomaterials consisting of cadmium selenide quantum dot (CdSe QDs) core and polyrotaxane shell (PR@QDs). Structure of PR@QDs was characterized using various techniques. It has been observed that the size of PR@QDs was between 20-25 nm in which diameter of core and thickness of shell were between 15-20 and 2-3 nm, respectively. Short-term in vitro cytotoxicity tests, using MTT (3-(4,5- dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide) assay, were conducted on mouse tissue connective fibroblast adhesive cell line (L929) in order to... 

    Synthesis and cytotoxicity assessment of superparamagnetic iron-gold core-shell nanoparticles coated with polyglycerol

    , Article Journal of Colloid and Interface Science ; Volume 345, Issue 1 , 2010 , Pages 64-71 ; 00219797 (ISSN) Jafari, T ; Simchi, A ; Khakpash, N ; Sharif University of Technology
    Abstract
    Core-shell iron-gold (Fe@Au) nanoparticles were synthesized by a facile reverse micelle procedure and the effect of water to surfactant molar ratio (w) on the size, size distribution and magnetic properties of the nanoparticles was studied. MTT assay was utilized to evaluate the cell toxicity of the nanoparticles. To functionalize the particles for MRI imaging and targeted drug delivery, the particles were coated by polyglycerol through capping with thiol followed by polymerization of glycidol. The characteristics of the particles were examined by X-ray diffraction (XRD), transmission electron microscopy (TEM), vibrating sample magnetometere (VSM), UV-visible spectroscopy, and Fourier... 

    A new approach for the in vitro identification of the cytotoxicity of superparamagnetic iron oxide nanoparticles

    , Article Colloids and Surfaces B: Biointerfaces ; Volume 75, Issue 1 , 2010 , Pages 300-309 ; 09277765 (ISSN) Mahmoudi, M ; Simchi, A ; Imani, M ; Shokrgozar, M. A ; Milani, A. S ; Häfeli, U. O ; Stroeve, P ; Sharif University of Technology
    Abstract
    Superparamagnetic iron oxide nanoparticles (SPIONs) are increasingly used in medical applications, such as targeting delivery and imaging. In the future, patients are more likely to be exposed to pharmaceutical products containing such particles. The study of toxicity of SPIONs has become of great importance in recent years, although the published data in this arena is limited. The aim of the present work is to investigate the cytotoxicity of SPIONs and the effect of the particles on the cell medium components. For this purpose, uncoated and polyvinyl alcohol (PVA) coated SPIONs with narrow size distribution were synthesized via a well-known coprecipitation method. The mouse fibroblast cell... 

    Graphene/cobalt nanocarrier for hyperthermia therapy and MRI diagnosis

    , Article Colloids and Surfaces B: Biointerfaces ; Volume 146 , 2016 , Pages 271-279 ; 09277765 (ISSN) Hatamie, S ; Ahadian, M. M ; Ghiass, M. A ; Iraji zad, A ; Saber, R ; Parseh, B ; Oghabian, M. A ; Shanehsazzadeh, S ; Sharif University of Technology
    Elsevier 
    Abstract
    Graphene/cobalt nanocomposites are promising materials for theranostic nanomedicine applications, which are defined as the ability to diagnose, provide targeted therapy and monitor the response to the therapy. In this study, the composites were synthesized via chemical method, using graphene oxide as the source material and assembling cobalt nanoparticles of 15 nm over the surface of graphene sheets. Various characterization techniques were then employed to reveal the morphology, size and structure of the nanocomposites, such as X-ray diffraction analysis, X-ray photoelectron spectroscopy, Fourier transform infrared spectroscopy, high resolution transmission electron microscopy and... 

    Effects of short term and long term Extremely Low Frequency Magnetic Field on depressive disorder in mice: Involvement of nitric oxide pathway

    , Article Life Sciences ; Volume 146 , 2016 , Pages 52-57 ; 00243205 (ISSN) Madjid Ansari, A ; Farzam Pour, S ; Sadr, A ; Shekarchi, B ; Majid Zadeh, A. K ; Sharif University of Technology
    Elsevier Inc 
    Abstract
    Aims Previous reports on the possible effects of Extremely Low Frequency Magnetic Fields (ELF MF) on mood have been paradoxical in different settings while no study has yet been conducted on animal behavior. In addition, it was shown that ELF MF exposure makes an increase in brain nitric oxide level. Therefore, in the current study, we aimed to assess the possible effect(s) of ELF MF exposure on mice Forced Swimming Test (FST) and evaluate the probable role of the increased level of nitric oxide in the observed behavior. Main methods Male adult mice NMRI were recruited to investigate the short term and long term ELF MF exposure (0.5 mT and 50 Hz, single 2 h and 2 weeks 2 h a day). Locomotor... 

    Efficient protein immobilization on polyethersolfone electrospun nanofibrous membrane via covalent binding for biosensing applications

    , Article Materials Science and Engineering C ; Volume 58 , 2016 , Pages 586-594 ; 09284931 (ISSN) Mahmoudifard, M ; Soudi, S ; Soleimani, M ; Hosseinzadeh, S ; Esmaeili, E ; Vossoughi, M ; Sharif University of Technology
    Elsevier Ltd  2016
    Abstract
    In this paper we introduce novel strategy for antibody immobilization using high surface area electrospun nanofibrous membrane based on ethyl-3-(3-dimethylaminopropyl)-carbodiimide/N-hydroxysuccinimide (EDC/NHS) coupling chemistry. To present the high performance of proposed biosensors, anti-staphylococcus enterotoxin B (anti-SEB) was used as a model to demonstrate the utility of our proposed system. Polymer solution of polyethersolfone was used to fabricate fine nanofibrous membrane. Moreover, industrial polyvinylidene fluoride membrane and conventional microtiter plate were also used to compare the efficiency of antibody immobilization. Scanning electron microscopy images were taken to...