Loading...
Search for: mouse
0.006 seconds
Total 70 records

    A hydrogen-bonded extracellular matrix-mimicking bactericidal hydrogel with radical scavenging and hemostatic function for ph-responsive wound healing acceleration

    , Article Advanced Healthcare Materials ; Volume 10, Issue 3 , 2021 ; 21922640 (ISSN) Ahmadian, Z ; Correia, A ; Hasany, M ; Figueiredo, P ; Dobakhti, F ; Eskandari, M. R ; Hosseini, S.H ; Abiri, R ; Khorshid, S ; Hirvonen, J ; Santos, H. A ; Shahbazi, M. A ; Sharif University of Technology
    Wiley-VCH Verlag  2021
    Abstract
    Generation of reactive oxygen species, delayed blood clotting, prolonged inflammation, bacterial infection, and slow cell proliferation are the main challenges of effective wound repair. Herein, a multifunctional extracellular matrix-mimicking hydrogel is fabricated through abundant hydrogen bonding among the functional groups of gelatin and tannic acid (TA) as a green chemistry approach. The hydrogel shows adjustable physicochemical properties by altering the concentration of TA and it represents high safety features both in vitro and in vivo on fibroblasts, red blood cells, and mice organs. In addition to the merit of facile encapsulation of cell proliferation-inducing hydrophilic drugs,... 

    A hydrogen-bonded extracellular matrix-mimicking bactericidal hydrogel with radical scavenging and hemostatic function for ph-responsive wound healing acceleration

    , Article Advanced Healthcare Materials ; Volume 10, Issue 3 , 2021 ; 21922640 (ISSN) Ahmadian, Z ; Correia, A ; Hasany, M ; Figueiredo, P ; Dobakhti, F ; Eskandari, M. R ; Hosseini, S. H ; Abiri, R ; Khorshid, S ; Hirvonen, J ; Santos, H. A ; Shahbazi, M. A ; Sharif University of Technology
    Wiley-VCH Verlag  2021
    Abstract
    Generation of reactive oxygen species, delayed blood clotting, prolonged inflammation, bacterial infection, and slow cell proliferation are the main challenges of effective wound repair. Herein, a multifunctional extracellular matrix-mimicking hydrogel is fabricated through abundant hydrogen bonding among the functional groups of gelatin and tannic acid (TA) as a green chemistry approach. The hydrogel shows adjustable physicochemical properties by altering the concentration of TA and it represents high safety features both in vitro and in vivo on fibroblasts, red blood cells, and mice organs. In addition to the merit of facile encapsulation of cell proliferation-inducing hydrophilic drugs,... 

    Alginate-based multifunctional films incorporated with sulfur quantum dots for active packaging applications

    , Article Colloids and Surfaces B: Biointerfaces ; Volume 215 , 2022 ; 09277765 (ISSN) Riahi, Z ; Priyadarshi, R ; Rhim, J. W ; Lotfali, E ; Bagheri, R ; Pircheraghi, G ; Sharif University of Technology
    Elsevier B.V  2022
    Abstract
    Sulfur quantum dots (SQDs) were fabricated using a facile hydrothermal method and used for the preparation of functional food packaging film and compared the properties with other sulfur-based fillers like elemental sulfur (ES) and sulfur nanoparticles (SNP). The SQDs have an average size of 5.3 nm and were very stable in aqueous suspension. Unlike other sulfur-based fillers, the SQD showed high antioxidant, antibacterial and antifungal activity, but no cytotoxicity was found for L929 mouse fibroblasts even after long-term exposure of 48 h. When sulfur-based fillers were added to the alginate film, SQD was more evenly dispersed in the polymer matrix than SNP and ES. The addition of SQD to... 

    A new approach for the in vitro identification of the cytotoxicity of superparamagnetic iron oxide nanoparticles

    , Article Colloids and Surfaces B: Biointerfaces ; Volume 75, Issue 1 , 2010 , Pages 300-309 ; 09277765 (ISSN) Mahmoudi, M ; Simchi, A ; Imani, M ; Shokrgozar, M. A ; Milani, A. S ; Häfeli, U. O ; Stroeve, P ; Sharif University of Technology
    Abstract
    Superparamagnetic iron oxide nanoparticles (SPIONs) are increasingly used in medical applications, such as targeting delivery and imaging. In the future, patients are more likely to be exposed to pharmaceutical products containing such particles. The study of toxicity of SPIONs has become of great importance in recent years, although the published data in this arena is limited. The aim of the present work is to investigate the cytotoxicity of SPIONs and the effect of the particles on the cell medium components. For this purpose, uncoated and polyvinyl alcohol (PVA) coated SPIONs with narrow size distribution were synthesized via a well-known coprecipitation method. The mouse fibroblast cell... 

    An improved synthesis and preliminary biodistribution study of a technetium-99m-labeled2-amino-2-deoxy(thioacetyl)-D-glucose complex ([ 99mTc]-TA-DG) as a tumor imaging agent

    , Article Iranian Journal of Nuclear Medicine ; Volume 15, Issue 28 , 2007 , Pages 43-48 ; 16812824 (ISSN) Johari Daha, F ; Sadeghzadeh, M ; Charkhlooie, G ; Haghir Ebrahimabadi, K ; Saeedi, M. R ; Sharif University of Technology
    2007
    Abstract
    Introduction: This report describes the synthesis of 2-Amino-2-deoxy(S- benzoylthioacetyl)-D-glucose (S-Bz-TA-DG), radiolabeled with [ 99mTc(CO)3(OH2)3]+ complex with a procedure including deprotection of the benzoyl group, characterization by HPLC using a C18 reverse phase column and preliminary biodistribution study in normal mice. Methods: [99mTc(CO) 3(H2O)3]+ complex was used to label TA-DG with 99mTc. This complex was prepared using up to 46 mCi of Na99mTcO4 in 1mL saline. The radiochemical purity (>95%) was determined by TLC in normal saline solution as the mobile phase. Radio-HPLC analysis of [99mTc]-(TA-DG) at pH=9.5-10, revealed that labeling with 99mTc resulted in the formation of... 

    An in vitro study of bare and poly(ethylene glycol)-co-fumarate-coated superparamagnetic iron oxide nanoparticles: A new toxicity identification procedure

    , Article Nanotechnology ; Volume 20, Issue 22 , 2009 ; 09574484 (ISSN) Mahmoudi, M ; Simchi, A ; Imani, M ; Milani, A. S ; Stroeve, P ; Sharif University of Technology
    2009
    Abstract
    As the use of superparamagnetic iron oxide nanoparticles (SPION) in biomedical applications increases (e.g. for targeting drug delivery and imaging), patients are likely to be exposed to products containing SPION. Despite their high biomedical importance, toxicity data for SPION are limited to date. The aim of this study is to investigate the cytotoxicity of SPION and its ability to change cell medium components. Bare and poly(ethylene glycol)-co-fumarate (PEGF)-coated SPION with narrow size distributions were synthesized. The particles were prepared by co-precipitation using ferric and ferrous salts with a molar Fe3+/Fe2+ ratio of 2. Dulbecco's modified Eagle's medium (DMEM) and primary... 

    A novel formulation of simvastatin nanoemulsion gel for infected wound therapy: In vitro and in vivo assessment

    , Article Journal of Drug Delivery Science and Technology ; Volume 72 , 2022 ; 17732247 (ISSN) Amoozegar, H ; Ghaffari, A ; Keramati, M ; Ahmadi, S ; Dizaji, S ; Moayer, F ; Akbarzadeh, I ; Abazari, M ; razzaghi abyaneh, M ; Bakhshandeh, H ; Sharif University of Technology
    Editions de Sante  2022
    Abstract
    Simvastatin, a well-known antihyperlipidemic drug, has antibacterial activity against a broad range of bacteria, especially Staphylococcus aureus. In present study, a nanoemulsion gel-based formulation containing Simvastatin was developed for infected wound therapy. Therefore, different formulations of Simvastatin nanoemulsion were prepared. Based on droplet size, polydispersity index and zeta potential, the best nanoemulsion formulation containing Simvastatin was selected for development of nanoemulsion gel formulation of drug using carbomer 934 as gelling agent. Thermodynamic stability of Simvastatin nanoemulsion was assessed at different conditions. The in vitro antibacterial activity... 

    Antitumor effect of therapeutic HPV DNA vaccines with chitosan-based nanodelivery systems

    , Article Journal of Biomedical Science ; Vol. 21, issue. 1 , July , 2014 ; ISSN: 10217770 Tahamtan, A ; Ghaemi, A ; Gorji, A ; Kalhor, H. R ; Sajadian, A ; Tabarraei, A ; Moradi, A ; Atyabi, F ; Kelishadi, M ; Sharif University of Technology
    Abstract
    Cervical cancer is the second-most-common cause of malignancies in women worldwide, and the oncogenic activity of the human papilloma virus types (HPV) E7 protein has a crucial role in anogenital tumors. In this study, we have designed a therapeutic vaccine based on chitosan nanodelivery systems to deliver HPV-16 E7 DNA vaccine, considered as a tumor specific antigen for immunotherapy of HPV-associated cervical cancer. We have developed a Nano-chitosan (NCS) as a carrier system for intramuscular administration using a recombinant DNA vaccine expressing HPV-16 E7 (NCS-DNA E7 vaccine). NCS were characterized in vitro for their gene transfection ability. Results: The transfection of CS-pEGFP... 

    Apoptotic and anti-apoptotic genes transcripts patterns of graphene in mice

    , Article Materials Science and Engineering C ; Volume 71 , 2017 , Pages 460-464 ; 09284931 (ISSN) Ahmadian, H ; Hashemi, E ; Akhavan, O ; Shamsara, M ; Hashemi, M ; Farmany, A ; Daliri Joupari, M ; Sharif University of Technology
    Elsevier Ltd  2017
    Abstract
    Recent studies showed that a large amount of graphene oxide accumulated in kidney and liver when it injected intravenously. Evaluation of lethal and apoptosis gene expression in these tissues, which are under stress is very important. In this paper the in vivo dose-dependent effects of graphene oxide and reduced graphene oxide nanoplatelets on kidney and liver of mice were studied. Balb/C mice were treated by 20 mg/kg body weight of nanoplatelets. Molecular biology analysis showed that graphene nanoplatelets injected intravenously lead to overexpression of BAX gene in both kidney and liver tissues (P ≥ 0.01). In addition these nanoparticles significantly increase BCL2 gene expression in both... 

    A smart tri-layered nanofibrous hydrogel thin film with controlled release of dual drugs for chemo-thermal therapy of breast cancer

    , Article Journal of Drug Delivery Science and Technology ; Volume 76 , 2022 ; 17732247 (ISSN) Asgari, S ; Mohammadi Ziarani, G ; Badiei, A ; Pourjavadi, A ; Kiani, M ; Sharif University of Technology
    Editions de Sante  2022
    Abstract
    A tri-layered nanofibrous hydrogel thin film with temperature sensitivity is introduced as a new controlled drug release system to treat breast cancer. A simultaneous heat generation with the tunable release of dual drugs is observed in response to visible light radiation. A tri-layered nanofibrous sheet was fabricated through sequential electrospinning the blends of Au@Chit@DOX-loaded poly(N-isopropylacrylamide-co-N-methylol acrylamide) (poly (NIPAAm-co-NMA)) and Curcumin-loaded poly (vinyl alcohol) (Cu-loaded PVA), where the Cu-loaded PVA nanofibers (NFs) are sandwiched between two layers of Au@Chit@DOX-loaded poly (NIPAAm-co-NMA) NFs. After thermal crosslinking of the tri-layered... 

    Cell toxicity of superparamagnetic iron oxide nanoparticles

    , Article Journal of Colloid and Interface Science ; Volume 336, Issue 2 , 2009 , Pages 510-518 ; 00219797 (ISSN) Mahmoudi, M ; Simchi, A ; Milani, A. S ; Stroeve, P ; Sharif University of Technology
    2009
    Abstract
    The performance of nanoparticles for biomedical applications is often assessed by their narrow size distribution, suitable magnetic saturation and low toxicity effects. In this work, superparamagnetic iron oxide nanoparticles (SPIONs) with different size, shape and saturation magnetization levels were synthesized via a co-precipitation technique using ferrous salts with a Fe3+/Fe2+ mole ratio equal to 2. A parametric study is conducted, based on a uniform design-of-experiments methodology and a critical polymer/iron mass ratio (r-ratio) for obtaining SPION with narrow size distribution, suitable magnetic saturation, and optimum biocompatibility is identified. Polyvinyl alcohol (PVA) has been... 

    Comparison of mouse embryo deformation modeling under needle injection using analytical Jacobian, nonlinear least square and artificial neural network techniques

    , Article Scientia Iranica ; Volume 18, Issue 6 , 2011 , Pages 1486-1491 ; 10263098 (ISSN) Abbasi, A. A ; Ahmadian, M. T ; Vossoughi, G. R ; Sharif University of Technology
    Abstract
    Analytical Jacobian, nonlinear least square and three layer artificial neural network models are employed to predict deformation of mouse embryos under needle injection, based on experimental data captured from literature. The Maximum Absolute Error (MAE), coefficient of determination ( R2), Relative Error of Prediction (REP), Root Mean Square Error of Prediction (RMSEP), NashSutcliffe coefficient of efficiency ( Ef) and accuracy factor ( Af) are used as the basis for comparison of these three models. Analytical Jacobian, nonlinear least square and ANN models have yielded the correlation coefficient of 0.9985, 0.9964 and 0.9998, respectively. The REP between the models predicted values and... 

    Core-sheath gelatin based electrospun nanofibers for dual delivery release of biomolecules and therapeutics

    , Article Materials Science and Engineering C ; Volume 108 , 2020 Zandi, N ; Lotfi, R ; Tamjid, E ; Shokrgozar, M. A ; Simchi, A ; Sharif University of Technology
    Elsevier Ltd  2020
    Abstract
    Coaxial electrospinning with the ability to use simultaneously two separate solvents provides a promising strategy for drug delivery. Nevertheless, controlled release of hydrophilic and sensitive therapeutics from slow biodegradable polymers is still challenging. To address this gap, we fabricated core-sheath fibers for dual delivery of lysozyme, as a model protein, and phenytoin sodium as a small therapeutic molecule. The sheath was processed by a gelatin solution while the core fibers were fabricated from an aqueous gelatin/PVA solution. Microstructural studies by transmission and scanning electron microscopy reveal the formation of homogeneous core-sheath nanofibers with an outer and... 

    Cytotoxicity and cell cycle effects of bare and poly(vinyl alcohol)-coated iron oxide nanoparticles in mouse fibroblasts

    , Article Advanced Engineering Materials ; Volume 11, Issue 12 , 2009 , Pages B243-B250 ; 14381656 (ISSN) Mahmoudi, M ; Simchi, A ; Vali, H ; Imani, M ; Shokrgozar, M. A ; Azadmanesh, K ; Azari, F ; Sharif University of Technology
    Abstract
    Super-paramagnetic iron oxide nanoparticles (SPIONs) are recognized as powerful biocompatible materials for use in various biomedical applications, such as drug delivery, magnetic-resonance imaging, cell/protein separation, hyperthermia and transfection. This study investigates the impact of high concentrations of SPIONs on cytotoxicity and cell-cycle effects. The interactions of surfacesaturated (via interactions with cell medium) bare SPIONs and those coated with poly(vinyl alcohol) (PVA) with adhesive mouse fibroblast cells (L929) are investigated using an MTT assay. The two SPION formulations are synthesized using a co-precipitation method. The bare and coated magnetic nanoparticles with... 

    Cytotoxicity of uncoated and polyvinyl alcohol coated superparamagnetic iron oxide nanoparticles

    , Article Journal of Physical Chemistry C ; Volume 113, Issue 22 , 2009 , Pages 9573-9580 ; 19327447 (ISSN) Mahmoudi, M ; Simchi, A ; Imani, M ; Sharif University of Technology
    2009
    Abstract
    Superparamagnetic iron oxide nanoparticles (SPION) are being increasingly used in various biomedical applications such as hyperthermia, cell and protein separation, enhancing resolution of magnetic resonance imaging, and drug delivery. However, the toxicity data for SPION are limited. In this study, uncoated and single polyvinyl alcohol coated SPION with high chemical reactivity (due to the bigger surface area) were synthesized using a coprecipitation method. Cytotoxicity of these magnetic nanoparticles and their ability to cause arrest in cell life-cycles was investigated. Interaction of these nanoparticles with adhesive mouse fibroblast cell line (L929) was probed using MTT assay. High... 

    Deformation prediction of mouse embryos in cell injection experiment by a feedforward artificial neural network

    , Article Proceedings of the ASME Design Engineering Technical Conference, 28 August 2011 through 31 August 2011 ; Volume 2, Issue PARTS A AND B , August , 2011 , Pages 543-550 ; 9780791854792 (ISBN) Abbasi, A. A ; Ahmadian, M. T ; Vossoughi, G. R ; Sharif University of Technology
    2011
    Abstract
    In this study, neural network models have been used to predict the mechanical behaviors of mouse embryos. In addition, sensitivity analysis has been carried out to investigate the influence of the significance of input parameters on the mechanical behavior of mouse embryos. In order to reach these purposes two neural network models have been implemented. Experimental data earlier deduced-by [Flückiger, M. (2004). Cell Membrane Mechanical Modeling for Microrobotic Cell Manipulation. Diploma Thesis, ETHZ Swiss Federal Institute of Technology, Zurich, WS03/04]-were collected to obtain training and test data for the neural network. The results of these investigations show that the correlation... 

    Delivery of melittin-loaded niosomes for breast cancer treatment: an in vitro and in vivo evaluation of anti-cancer effect

    , Article Cancer Nanotechnology ; Volume 12, Issue 1 , 2021 ; 18686958 (ISSN) Dabbagh Moghaddam, F ; Akbarzadeh, I ; Marzbankia, E ; Farid, M ; khaledi, L ; Reihani, A. H ; Javidfar, M ; Mortazavi, P ; Sharif University of Technology
    BioMed Central Ltd  2021
    Abstract
    Background: Melittin, a peptide component of honey bee venom, is an appealing candidate for cancer therapy. In the current study, melittin, melittin-loaded niosome, and empty niosome had been optimized and the anticancer effect assessed in vitro on 4T1 and SKBR3 breast cell lines and in vivo on BALB/C inbred mice. "Thin-layer hydration method" was used for preparing the niosomes; different niosomal formulations of melittin were prepared and characterized in terms of morphology, size, polydispersity index, encapsulation efficiency, release kinetics, and stability. A niosome was formulated and loaded with melittin as a promising drug carrier system for chemotherapy of the breast cancer cells.... 

    Design and Synthesis of Novel Polyglycerol Hybrid Nanomaterials for Potential Applications in Drug Delivery Systems

    , Article Macromolecular Bioscience ; Volume 11, Issue 3 , NOV , 2011 , Pages 383-390 ; 16165187 (ISSN) Zarrabi, A ; Adeli, M ; Vossoughi, M ; Shokrgozar, M. A ; Sharif University of Technology
    2011
    Abstract
    The synthesis of a new drug delivery system based on hybrid nanomaterials containing a β-CD core and hyperbranched PG is described. Conjugating PG branches onto β-CD not only increases its water solubility but also affects its host/guest properties deeply. It can form molecular inclusion complexes with small hydrophobic guest molecules such as ferrocene or FITC with reasonable release. In addition, the achievable payloads are significantly higher as for carriers such as hyperbranched PGs. Short-term in vitro cytotoxicity and hemocompatibility tests on L929 cell lines show that the hybrid nanomaterial is highly biocompatible. Due to their outstanding properties, β-CD-g-PG hybrid nanomaterials... 

    Detection of dopamine receptors using nanoscale dendrimer for potential application in targeted delivery and whole-body imaging: synthesis and in vivo organ distribution

    , Article ACS Applied Bio Materials ; Volume 5, Issue 4 , 2022 , Pages 1744-1755 ; 25766422 (ISSN) Ramezani Farani, M ; Aminzadeh Jahromi, N ; Ali, V ; Ebrahimpour, A ; Salehian, E ; Shafiee Ardestani, M ; Seyedhamzeh, M ; Ahmadi, S ; Sharifi, E ; Ashrafizadeh, M ; Rabiee, N ; Makvandi, P ; Sharif University of Technology
    American Chemical Society  2022
    Abstract
    Dopamine is one of the most important neurotransmitters released by neurons in the central nervous system, and a variety of neurological illnesses and mental disorders are associated with impairments in the secretion and functionality of dopamine. Dopamine, depending on the type of receptors, can act as a stimulant or an inhibitor. In this study, dendrimer-conjugated dopamine was utilized as a chelating agent for Technetium-99m to investigate the organ distribution of this compound in vivo using the single-photon emission computed tomography (SPECT) technique. For this purpose, dendrimers were synthesized using polyethylene glycol diacid and citric acid precursors, and dopamine was... 

    Developmental barcoding of whole mouse via homing CRISPR

    , Article Science ; Volume 361, Issue 6405 , 2018 ; 00368075 (ISSN) Kalhor, R ; Kalhor, K ; Mejia, L ; Leeper, K ; Graveline, A ; Mali, P ; Church, G. M ; Sharif University of Technology