Search for: multiscale-models
0.009 seconds
Total 52 records

    Mechanical Behavior Analysis of Carbon Nanotube-Based Polymer Composites using Multiscale Modeling

    , Ph.D. Dissertation Sharif University of Technology Montazeri Hedesh , Abbas (Author) ; Naghdabadi, Reza (Supervisor) ; Rafii Tabar, Hashem (Supervisor) ; Bagheri, Reza (Supervisor)
    In this project, two multiscale modeling procedures have been implemented to study the mechanical behavior of SWCNT/polymer composites. First, a new three-phase molecular structural mechanics/ finite element (MSM/FE) multiscale model has been introduced which consists of three components, i.e. a carbon nanotube, an interphase layer and outer polymer matrix. The nanotube is modeled at the atomistic scale using MSM, whereas the interphase layer and polymer matrix are analyzed by the FE method. Using this model, we have investigated the macroscopic material properties of nanocomposite with and without considering the interphase and compared the results with molecular dynamics (MD) simulations.... 

    Temperature-Dependent Hierarchical Multi-Scale Modeling of Nano-Materials Considering Surface Effect

    , M.Sc. Thesis Sharif University of Technology Ghahremani, Pegah (Author) ; Khoei, Amir Reza (Supervisor)
    In continuum mechanics, the constitutive models are usually based on the Cauchy-Born (CB) hypothesis which seeks the intrinsic characteristics of the material via the atomistic information and it is valid in small deformation. The main purpose of this thesis is to investigate the temperature effect on the stability and size dependency of Cauchy-Born hypothesis and a novel temperature-dependent multi-scale method is developed to investigate the role of temperature on surface effects in the analysis of nano-scale materials. Three-dimensional temperature-related Cauchy-Born formulation are developed for crystalline structure and the stability and size dependency of temperature-related... 

    Numerical Multiscale Modelingof Cardiovascular System

    , M.Sc. Thesis Sharif University of Technology Yousefi, Amir (Author) ; Firoozabadi, Bahar (Supervisor) ; Saeedi, Mohammad Saeed (Supervisor)
    One of the main reasons of brain attack is stenosis in Carotid bifurcation. As a result, it's a major field of interest for a large group of scientists including medical doctors and engineers. In the engineering fields a large number of studies have been done on this topic based on Numerical Simulation. As blood boundary conditions in this region strictly depend on the rest of the body's vascular system, the problem is the definition of the boundary condition in this approach. In addition, because of lack of enough hardware sources simulation of the whole blood system is impossible; thus the rest of the system should be simulated based on radical methods with less details. In this project a... 

    Multi-scale Modeling of Crack Using Nano-XFEM

    , M.Sc. Thesis Sharif University of Technology Ghaffari, Reza (Author) ; Haddadpour, Hassan (Supervisor)
    In this thesis a mutliScale model based on the Cauchy-Born hypothesis and via usage of XFEM is proposed for crack modeling. By solving an example, the important of surface effects in the surface stresses region is shown. Considering not being able to model the surface effects with the Cauchy-Born method, the boundary Cauchy-Born method for modeling crack effects is used. Moreover, three Molecular Dynamics method for modeling crack will be proposed. According to the obtained results from these methods, it was deduced that for calculating the correct surface stresses in Molecular Dynamics the mutual interaction of upper and lower atoms of crack should be omitted. Finally, the validation of... 

    Concurrent Multi-Scale Approach for Modeling Mechanical Behavior of Crystalline Nano-Structures

    , M.Sc. Thesis Sharif University of Technology Aramoon, Amin (Author) ; Khoei, Amir Reza (Supervisor)
    Mindboggling advances in nanotechnology have urged researchers to develop state-of-the-art numerical methods to enable them to simulate and to interpret phenomena at this scale. Unfortunately, Classical models have numerous shortcomings which hinder their applications in new contexts. For instance, classical Continuum Mechanics fails to appropriately depict material behavior at small scales, and, on the other hand, Molecular Dynamics simulations are computationally prohibitive. As a consequence, researchers have devised multi-scale methods during the past decade to overcome these obstacles. In fact, in multi-scale methods information is passed from one mathematical description to the other.... 

    Multiscale Modeling of Carbon Nano Structures Using Tersoff Potential Function

    , M.Sc. Thesis Sharif University of Technology Najjari, Alireza (Author) ; Khoei, Amir Reza (Supervisor)
    During the last decade, thanks to a combination of exploding computational power and improved physical insight into material behavior, continuum and atomistic simulations improved greatly. Both classes of methods are now used to solve problems, which are more complicated than ever with greater accuracy than ever before. Nevertheless, there still exist problems for which neither method alone is sufficient. In general, atomistic simulations cannot be used for such length scales due to the restrictions on the number of atoms that can be simulated, along with the time scales, which they can be simulated for. In contrast, continuum simulations tend to fail at the atomic scale, for example due to... 

    Multi Scale Modeling of Carbon Nano Structures Using Brenner Potential Function

    , M.Sc. Thesis Sharif University of Technology Ziapour, Rouzbeh (Author) ; Khoei, Amir Reza (Supervisor)
    Due to high cost and ineffectiveness of molecular models a new method for coupling continuum models with molecular models is used. In this method, the continuum and molecular domains are overlapped. Comparing the results obtained from the concurrent simulations and molecular dynamic simulations proves the accuracy of the method used. The method is used for modeling single layered graphene sheets, stress contours are presented for multiscale and both static and dynamic simulations of concurrent. For multiscale simulations two different carbon nano tubes are investigated and strees-bond angle and strees-bond length are also presented  

    Modelling and Simulation of Melanoma Cancer, Based on Cellular Automata Approaches

    , M.Sc. Thesis Sharif University of Technology Rad, Jaber (Author) ; Habibi, Jafar (Supervisor)
    Nowadays, M&S is critical as a powerful tool for human to fight against cancer. Skin cancer is one of the most widespread cancers and melanoma would be the most dangerous kind of it. In cancerous micro-environment, cancer cells interact with vasculature, and compete with normal cells over nutrients. This plays a major role in tumor progression pattern and speed. In recent years, a few multiscale models have been developed considering these phenomena. Such a model provides a platform for future researches, especially in drug effects prediction. A reliable simulation must satisfy the constraints and facts in the real world as much as possible. M&S credibility assessment is a major concern to... 

    Continuum Analysis of Defects Based on Atomistic Simulat

    , M.Sc. Thesis Sharif University of Technology Heidarzadeh, Narges (Author) ; Khoei, Amir Reza (Supervisor) ; Jahanshahi, Mohsen (Co-Advisor)
    In this study, a new multi-scale hierarchical technique has been employed to investigate the role of temperature on nano-plates with hex atomic structure. Different number of primary edge dislocations is considered and the temperature varies from 0 up to 800 K. Primary edge dislocations are created by proper adjustment of atomic positions to resemble discrete dislocations (DD’s) and then the application of equations of motion to the relaxed configuration of this adjustment. The interatomic potential used for atomistic simulation is Finnis-Sinclair Embedded-Atom-Method (FS-EAM) as many-body interatomic potential and the Nose-Hoover thermostat has been implemented to adjust the modulation of... 

    Hierarchical Multiscale Modeling in Large and Plastic Deformations

    , M.Sc. Thesis Sharif University of Technology Sarkari Khorrami, Mohammad (Author) ; Khoei, Amir Reza (Supervisor)
    In this study, the hierarchical multiscale method is presented to model macro-scale materials with considering large and plastic deformations. Since the classic methods such as continuum mechanics were unable to model defects such as dislocations, voids, and etc. at nano scale. Also, the molecular dynamics methods have high computational costs; hence, recearchers try to develop multiscale methods in order to utilize them. Multiscale modeling in which two scales are considered and some information be transferred from fine scale to coarse scale. In this work, the coarse scale is modeled by finite element method (FEM) and the fine scale is analysed by molecular dynamics (MD). In fact, two... 

    Multi-scale Modeling of Heterogeneous Nano-materials Using Representative Volume Element

    , M.Sc. Thesis Sharif University of Technology Shafieyoon, Ali (Author) ; Khoei, Amir Reza (Supervisor)
    In this paper a new multi-scale method is developed for modeling heterogeneous materials, this method is based on homogenization and it is classified as hierarchical multi-scale method. For simulating problems in continues media, finding the elastic tensor is necessity, in homogeneous material this tensor come down from Young’s modulus and poison’s ratio, however in Nano-scale problems specially in heterogeneous material, this solution does not work and need to revise. To deal with heterogeneity in these problems homogenization by a representative volume element is a novel method. The properties of material is imported from RVE in each step of solving problem to larger scale, and by... 

    Calculation of Heterogenous Material Properties by Using of Eshelby based and BEM Methods

    , M.Sc. Thesis Sharif University of Technology Yazdanparast, Reza (Author) ; Hosseini Kordkheili, Ali (Supervisor)
    To days the heterogeneous material are used extensively in the engineering materials. Optimization ability is a key feature of these materials to reach desired properties. Heterogeneous materials are the materials that make up from the constituents of multiphase materials in lower length scale such as mesoscopic, microscopic or/and Nano scales. So the properties of these materials at each scale are depending on to several characteristics of heterogeneities such as geometry, material and packing. In these materials the effects of heterogeneities at the lower scales are very significant and the constitutive equations are different for each range of scale. The proper selection of this range... 

    A Multi-Scale Method for Modeling and Analysis of the Creep Behavior in Composite plates

    , M.Sc. Thesis Sharif University of Technology Barzegar, Mohsen (Author) ; Hosseini Kordkheili, Ali (Supervisor)
    Polymer matrix composites, which are composed of a wide variety of short or long fibers bound together by organic polymer matrix, have been widely utilized in many engineering aeras, particularly in aerospace engineering. Recently, studying and analyzing the mechanical behavior of composites was one of the major reaserch interests. Regarding the vast variety of data drived from experimental tests, a requirement of tools that could facilitate estimating creep properties of materials is an important concern for researchers. The present work at first, introduces some major creep models and then proposes a 3D creep Burgers model for implementing in abaqus which could be used in macro phase. This... 

    Multiscale Modeling of Cohesive Crack Growth based on XFEM and Damage Model

    , M.Sc. Thesis Sharif University of Technology Salahi Nezhad, Mohammad (Author) ; Khoei, Amir Reza (Supervisor)
    In this research, multi-scale modeling of mixed-mode failure mechanism of quassi-brittle materials is presented. For modeling a realistic crack growth in heterogeneious media, crack initiation criterion, crack growth orientation and the macroscopic cohesive law are derived from a microscopic sample. As a microscopic crack initiation criterion, acoustic tensor is investigated and scaled acoustic tensor has been proposed by comparison its results with maximum principal tensile stress. For crack growth direction based on micro-scale, acoustic tensor and multiscale aggregating discontinuities has been investigated and multiscale aggregating discontinuities by comparison results of these methods... 

    Hybrid Multiscale Modeling of Cancer Cell Behavior

    , Ph.D. Dissertation Sharif University of Technology Zangooei, Mohammad Hossein (Author) ; Habibi, Jafar (Supervisor)
    Cancer is a class of diseases characterized by out-of-control cell growth. Cancer is among the leading causes of death worldwide.Cancer modeling is increasingly being recognized as a powerful tool to refine hypotheses, focus experiments, and enable predictions that are more accurate.We investigate a three-dimensional multiscale model of vascular tumour growth, which couples blood flow, angiogenesis, vascular remodelling, nutrient/growth factor transport, movement of, and interactions between, normal and tumour cells. We constructed a hybrid multi- scale agent-based model that combines continuous and discrete methods.Each cell is represented as an agent. The agents have rules that they must... 

    Multiscale Nonlinear Finite Element Analysis of Nanostructured Materials Based on Equivalent Continuum Mechanics

    , Ph.D. Dissertation Sharif University of Technology Ghanbari, Jaafar (Author) ; Naghdabadi, Reza (Supervisor) ; Sohrabpour, Saeed (Supervisor)
    Nanostructured materials are a new kind of engineering materials which attracted researchers’ interest because of their interesting mechanical /physical properties, as well as controllable microstructural design ability for desired applications. These new materials are homogeneous at the macroscale but at the microstructural level, may have heterogeneities including common nanostructures. Because of multiscale nature of these materials, new multiscale methods should be developed and used for better understanding the behavior of them. Multiscale methods could be categorized into concurrent and hierarchical methods. In concurrent methods, the domain under study is explicitly divided into... 

    Generating a Pulsatile Pulmonary Flow after Fontan Operation by Means of Computational Fluid Dynamics (CFD)

    , M.Sc. Thesis Sharif University of Technology Ghoreyshi, Mostafa (Author) ; Saidi, Mohamad Said (Supervisor) ; Firoozabadi, Bahar (Supervisor) ; Navaee Shirazei, Mohammad Ali (Co-Advisor)
    This study considers blood flow in total cavopulmonary connection (TCPC) morphology, which is created in Fontan surgical procedure in patients with single ventricle heart disease. Ordinary process of TCPC operation reduces the pulmonary blood flow pulsatility; because of right ventricle being bypassed. This phenomenon causes a lot of side effects for patients. A cardiac surgeon has suggested that keeping main pulmonary artery (MPA) partially open, would increase pulmonary flow pulsations. MPA gets closed in ordinary TCPC operation. The purpose of current study is to verify the effects of keeping MPA partially open on pulmonary flow pulsations, by means of computational fluid dynamics (CFD).... 

    Coupling 3D-1D for Blood flow Simulation in Carotid Bifurcation

    , M.Sc. Thesis Sharif University of Technology Chiniforooshan Esfahani, Iman (Author) ; Firoozabadi, Bahar (Supervisor) ; Saeedi, Mohammad Saeed (Supervisor)
    Recently, many investigations are done in the field of the modeling of the cardiovascular system. For the purpose of understanding of this system, mainly the location of formation and development of atherosclerosis, these investigations are so vital. The multi-scale modeling is an appropriate method to reduce the cost of calculation and also, this method simplifies the complicated model of cardiovascular system. This research presents a multi-scale 1D-3D modeling of cardiovascular system. In this model, the three dimensional geometry of carotid bifurcation is coupled with a one dimensional full model of cardiovascular system. We used some user defined function in the Fluent software for... 

    Coarse-Grain Multi-Scale Modeling for Numerical Simulation of Plastic Behavior in Nano-Scale Material

    , M.Sc. Thesis Sharif University of Technology Bahrololoumi Tabatabaei, Amir (Author) ; Khoei, Amir Reza (Supervisor)
    In this paper, a multiscale coarse graining method is developed on the basis of the force matching theorem in order to model the nonlinear behavior of crystalline material. In this framework, two scales are involved, i.e. the nano- and meso-scales. In each of scales, molecular dynamic simulations are employed with this difference that the fine scale is modeled via embedded atom method many body potential and at the coarse scale the simulation is based on pairwise potential. In addition, the linkage between fine and coarse scales is achieved by data transfer between two scales; in a way that required information for coarse grain analyses, i.e. inter-particle potential and coarse scale initial... 

    Coarse-gained Multi-scale Modeling for Numerical Simulation of Nonlinear Behavior of Materials in Nano-scale

    , M.Sc. Thesis Sharif University of Technology Mohammadi, Khashayar (Author) ; Khoei, Amir Reza (Supervisor)
    In this thesis, a coarse-grained multi-scale method for 2D crystallyn solids based-on finite element consepts has presented. In this method, both scales are atomic scale and similar to what we see in non-local QC method, the entire atomic structure will be intact. Accordingly, calculations of potential functions and forces in the domain will have the atomic accuracy. In the presented method to reduce the domain’s degrees of freedom, the classical finite-element meshing concept to mesh the elastic linear areas in the domain is used and the MD calculations will done on the mesh nodes. Therefore, degrees of freedom in the system will reduce and consequently, the computational cost will reduce....