Loading...
Search for: muscle-tissues
0.004 seconds

    Chitosan-gelatin sheets as scaffolds for muscle tissue engineering

    , Article Artificial Cells, Nanomedicine and Biotechnology ; Volume 43, Issue 2 , Nov , 2015 , Pages 124-132 ; 21691401 (ISSN) Hajiabbas, M ; Mashayekhan, S ; Nazaripouya, A ; Naji, M ; Hunkeler, D ; Rajabi Zeleti, S ; Sharifiaghdas, F ; Sharif University of Technology
    Informa Healthcare  2015
    Abstract
    Hydrogels made of natural polymers [chitosan (CS) and gelatin (G)] have been prepared having mechanical properties similar to those of muscle tissues. In this study, the effect of polymer concentration and scaffold stiffness on the behavior of seeded muscle-derived cells (MDCs) on the CS-G hydrogel sheets has been evaluated. Both variables were found to be important in cell viability. Viability was assessed by observation of the cell morphology after 1 day as well as a 14-day MTT assay. The CS-G hydrogels were characterized using Fourier transform infrared (FTIR) analysis, which revealed evidences of strong intermolecular interactions between CS and G. Hydrogel samples with intermediate... 

    Three-dimensional bioprinting of functional skeletal muscle tissue using gelatin methacryloyl-alginate bioinks

    , Article Micromachines ; Volume 10, Issue 10 , 2019 ; 2072666X (ISSN) Seyedmahmoud, R ; Çelebi Saltik, B ; Barros, N ; Nasiri, R ; Banton, E ; Shamloo, A ; Ashammakhi, N ; Dokmeci, M. R ; Ahadian, S ; Sharif University of Technology
    MDPI AG  2019
    Abstract
    Skeletal muscle tissue engineering aims to fabricate tissue constructs to replace or restore diseased or injured skeletal muscle tissues in the body. Several biomaterials and microscale technologies have been used in muscle tissue engineering. However, it is still challenging to mimic the function and structure of the native muscle tissues. Three-dimensional (3D) bioprinting is a powerful tool to mimic the hierarchical structure of native tissues. Here, 3D bioprinting was used to fabricate tissue constructs using gelatin methacryloyl (GelMA)-alginate bioinks. Mechanical and rheological properties of GelMA-alginate hydrogels were characterized. C2C12 myoblasts at the density 8 × 106 cells/mL... 

    Healthy and diseasedin vitromodels of vascular systems

    , Article Lab on a Chip ; Volume 21, Issue 4 , 2021 , Pages 641-659 ; 14730197 (ISSN) Hosseini, V ; Mallone, A ; Nasrollahi, F ; Ostrovidov, S ; Nasiri, R ; Mahmoodi, M ; Haghniaz, R ; Baidya, A ; Salek, M. M ; Darabi, M. A ; Orive, G ; Shamloo, A ; Dokmeci, M. R ; Ahadian, S ; Khademhosseini, A ; Sharif University of Technology
    Royal Society of Chemistry  2021
    Abstract
    Irregular hemodynamics affects the progression of various vascular diseases, such atherosclerosis or aneurysms. Despite the extensive hemodynamics studies on animal models, the inter-species differences between humans and animals hamper the translation of such findings. Recent advances in vascular tissue engineering and the suitability ofin vitromodels for interim analysis have increased the use ofin vitrohuman vascular tissue models. Although the effect of flow on endothelial cell (EC) pathophysiology and EC-flow interactions have been vastly studied in two-dimensional systems, they cannot be used to understand the effect of other micro- and macro-environmental parameters associated with... 

    Design, fabrication and characterization of oxidized alginate-gelatin hydrogels for muscle tissue engineering applications

    , Article Journal of Biomaterials Applications ; Volume 31, Issue 1 , 2016 , Pages 152-161 ; 08853282 (ISSN) Baniasadi, H ; Mashayekhan, S ; Fadaoddini, S ; Haghirsharifzamini, Y ; Sharif University of Technology
    SAGE Publications Ltd  2016
    Abstract
    In this study, we reported the preparation of self cross-linked oxidized alginate-gelatin hydrogels for muscle tissue engineering. The effect of oxidation degree (OD) and oxidized alginate/gelatin (OA/GEL) weight ratio were examined and the results showed that in the constant OA/GEL weight ratio, both cross-linking density and Young's modulus enhanced by increasing OD due to increment of aldehyde groups. Furthermore, the degradation rate was increased with increasing OD probably due to decrement in alginate molecular weight during oxidation reaction facilitated degradation of alginate chains. MTT cytotoxicity assays performed on Wharton's Jelly-derived umbilical cord mesenchymal stem cells...