Loading...
Search for: najafi--m
0.007 seconds
Total 32 records

    The utilization of patients’ information to improve the performance of radiotherapy centers: A data-driven approach

    , Article Computers and Industrial Engineering ; Volume 172 , 2022 ; 03608352 (ISSN) Moradi, S ; Najafi, M ; Mesgari, S ; Zolfagharinia, H ; Sharif University of Technology
    Elsevier Ltd  2022
    Abstract
    The high demand for radiotherapy services, combined with the limited capacity of available resources, patient unpunctuality, and series of appointments, makes Patient Appointment Scheduling (PAS) in radiotherapy centers very challenging. Although most centers use a First-Come-First-Serve (FCFS) policy for appointment scheduling, this approach does not consider patients’ behaviors, and consequently, it performs poorly. This type of inappropriate scheduling usually leads to inefficiency at the center and/or patient dissatisfaction. This study provides a data-driven approach to patient appointment scheduling to deal with the challenges mentioned above, and it considers patients’ histories of... 

    A decision support model for robust allocation and routing of search and rescue resources after earthquake: a case study

    , Article Operational Research ; Volume 22, Issue 2 , 2022 , Pages 1039-1081 ; 11092858 (ISSN) Ahmadi, G ; Tavakkoli Moghaddam, R ; Baboli, A ; Najafi, M ; Sharif University of Technology
    Springer Science and Business Media Deutschland GmbH  2022
    Abstract
    The efficient planning of search and rescue (SAR) operations is highly impactful in the disaster response phase, which offers a limited time window with a declining chance for saving trapped people. The present paper introduces a new robust decision support framework for planning SAR resource deployment in post-disaster districts. A two-stage decomposition approach is applied to formulate the problem as iterative interrelated stages of mixed-integer programming (MIP) models. The first stage presents a robust multi-period allocation model for maximizing fair and effective demand coverage in the affected districts during the entire planning horizon. It takes into account the time-sensitiveness... 

    Equity or equality? Which approach brings more satisfaction in a kidney-exchange chain?

    , Article Journal of Personalized Medicine ; Volume 11, Issue 12 , 2021 ; 20754426 (ISSN) Hosseinzadeh, A ; Najafi, M ; Cheungpasitporn, W ; Thongprayoon, C ; Fathi, M ; Sharif University of Technology
    MDPI  2021
    Abstract
    In United States (U.S.), government-funded organizations, such as NLDAC, reimburse travel and subsistence expenses incurred during living-organ donation process. However, in Iran, there is a non-governmental organization called Iranian Kidney Foundation (IKF) that funds the direct and indirect costs of donors through charitable donations and contributions from participants in the exchange program. In this article, for countries outside the U.S. that currently use an equality approach, we propose a potential new compensation-apportionment approach (equitable approach) for kidney-exchange chains and compare it with the currently available system (equality approach) in terms of the... 

    Preparation and fatigue behavior of graphene-based aerogel/epoxy nanocomposites

    , Article Materialpruefung/Materials Testing ; Volume 63, Issue 2 , 2021 , Pages 163-168 ; 00255300 (ISSN) Kordi, A ; Nazari, S. A ; Emam, A ; Najafi, M ; Saryazdi, M. G ; Sharif University of Technology
    Walter de Gruyter GmbH  2021
    Abstract
    In this research, the effect of adding graphene-based aerogel ((G)A) nanoparticles on the tensile and fatigue behavior of the epoxy polymer was investigated. Specimens of nanocomposites were prepared by adding 0.05, 0.1, 0.2, 0.5, 1, and 2 wt.-% (G)A nanoparticles to the epoxy polymer. Tensile tests revealed that the 0.1 wt.-% graphene-based aerogel/ epoxy ((G)A/E) nanocomposites had the highest increase in tensile strength with 19 % growth compared to neat epoxy. Also, the tensile modulus increased by 15 % in the 0.5 wt.-% (G)A/E nanocomposites. A substantial improvement in fatigue life of the epoxy polymer was observed on adding 0.1 wt.-% (G)A nanoparticles. For instance, the fatigue life... 

    Selection of prime mover to meet heating demand of a single effect absorption chiller based on laws of thermodynamics

    , Article SN Applied Sciences ; Volume 3, Issue 1 , 2021 ; 25233971 (ISSN) Mohammadian Korouyeh, M ; Saidi, M. H ; Najafi, M ; Aghanajafi, C ; Sharif University of Technology
    Springer Nature  2021
    Abstract
    In this study the first and the second laws of thermodynamics are evaluated for a single effect absorption chiller. Entropy generation and COP are selected as the objective functions and their variations are studied by varying the generator temperature for various condensing temperatures. For this purpose, the enthalpy and the entropy data of the super-heated steam, saturated steam and the saturated water are formulated in the mathematical equations. Also to provide the required steam of generator, prime mover in the form of internal combustion engine is applied and its partial load conditions are analyzed. A residential tower is considered as the case study for selecting the proper prime... 

    Increasing risk of meteorological drought in the Lake Urmia basin under climate change: Introducing the precipitation–temperature deciles index

    , Article Journal of Hydrology ; Volume 592 , 2021 ; 00221694 (ISSN) Abbasian, M. S ; Najafi, M. R ; Abrishamchi, A ; Sharif University of Technology
    Elsevier B.V  2021
    Abstract
    Meteorological droughts due to the concurrent occurrence of low-precipitation and high-temperature events can lead to severe negative impacts on agriculture, economy, ecosystem, and society. This study proposes a novel framework to characterize such drought conditions based on the joint variability of precipitation–temperature, particularly under climate change. Generalized hierarchical linear model is used to downscale precipitation and temperature at multiple stations from the outputs of nine General Circulation Models (GCMs) under Representative Concentration Pathways (RCPs) 4.5 and 8.5. A bivariate drought index called Precipitation–Temperature Deciles Index (PTDI) is developed using... 

    Microstructural characterization and enhanced hardness of nanostructured Ni3Ti– NiTi (B2) intermetallic alloy produced by mechanical alloying and fast microwave-assisted sintering process

    , Article Intermetallics ; Volume 131 , 2021 ; 09669795 (ISSN) Akbarpour, M. R ; Alipour, S ; Najafi, M ; Ebadzadeh, T ; Kim, H. S ; Sharif University of Technology
    Elsevier Ltd  2021
    Abstract
    In this paper, the rapid synthesis of nanostructured NiTi–Ni3Ti intermetallic alloy from titanium and nickel powders through mechanical alloying followed by microwave-assisted sintering process was investigated. The sintered samples at different temperatures exhibited major phases of NiTi– B2 and Ni3Ti, and minor phases of NiTi–B19′ and Ti2Ni. The density, porosity and microhardness of the sample varied based on the sintering temperature, in which the highest density and microhardness (~750 H V) were obtained at sintering temperature of 1100 °C. Based on the results of this research, the microwave-assisted sintering can be applied to fabricate Ni–Ti alloys with improved mechanical properties... 

    Increasing risk of meteorological drought in the Lake Urmia basin under climate change: Introducing the precipitation–temperature deciles index

    , Article Journal of Hydrology ; Volume 592 , 2021 ; 00221694 (ISSN) Abbasian, M. S ; Najafi, M. R ; Abrishamchi, A ; Sharif University of Technology
    Elsevier B.V  2021
    Abstract
    Meteorological droughts due to the concurrent occurrence of low-precipitation and high-temperature events can lead to severe negative impacts on agriculture, economy, ecosystem, and society. This study proposes a novel framework to characterize such drought conditions based on the joint variability of precipitation–temperature, particularly under climate change. Generalized hierarchical linear model is used to downscale precipitation and temperature at multiple stations from the outputs of nine General Circulation Models (GCMs) under Representative Concentration Pathways (RCPs) 4.5 and 8.5. A bivariate drought index called Precipitation–Temperature Deciles Index (PTDI) is developed using... 

    Microstructural characterization and enhanced hardness of nanostructured Ni3Ti– NiTi (B2) intermetallic alloy produced by mechanical alloying and fast microwave-assisted sintering process

    , Article Intermetallics ; Volume 131 , 2021 ; 09669795 (ISSN) Akbarpour, M. R ; Alipour, S ; Najafi, M ; Ebadzadeh, T ; Kim, H. S ; Sharif University of Technology
    Elsevier Ltd  2021
    Abstract
    In this paper, the rapid synthesis of nanostructured NiTi–Ni3Ti intermetallic alloy from titanium and nickel powders through mechanical alloying followed by microwave-assisted sintering process was investigated. The sintered samples at different temperatures exhibited major phases of NiTi– B2 and Ni3Ti, and minor phases of NiTi–B19′ and Ti2Ni. The density, porosity and microhardness of the sample varied based on the sintering temperature, in which the highest density and microhardness (~750 H V) were obtained at sintering temperature of 1100 °C. Based on the results of this research, the microwave-assisted sintering can be applied to fabricate Ni–Ti alloys with improved mechanical properties... 

    Multi-site statistical downscaling of precipitation using generalized hierarchical linear models: a case study of the imperilled Lake Urmia basin

    , Article Hydrological Sciences Journal ; Volume 65, Issue 14 , 2020 , Pages 2466-2481 Abbasian, M. S ; Abrishamchi, A ; Najafi, M. R ; Moghim, S ; Sharif University of Technology
    Taylor and Francis Ltd  2020
    Abstract
    A downscaling model capable of explaining the temporal and spatial variability of regional hydroclimatic variables is essential for reliable climate change studies and impact assessments. This study proposes a novel statistical approach based on generalized hierarchical linear model (GHLM) to downscale precipitation from the outputs of general circulation models (GCMs) at multiple sites. GHLM partitions the total variance of precipitation into within- and between-site variability allowing for transferring information between sites to develop a regional downscaling model. The methodology is demonstrated by downscaling precipitation using the outputs of eight GCMs in Lake Urmia basin in... 

    Increasing risk of meteorological drought in the Lake Urmia basin under climate change: Introducing the precipitation–temperature deciles index

    , Article Journal of Hydrology ; 2020 Abbasian, M. S ; Najafi, M. R ; Abrishamchi, A ; Sharif University of Technology
    Elsevier B.V  2020
    Abstract
    Meteorological droughts due to the concurrent occurrence of low-precipitation and high-temperature events can lead to severe negative impacts on agriculture, economy, ecosystem, and society. This study proposes a novel framework to characterize such drought conditions based on the joint variability of precipitation–temperature, particularly under climate change. Generalized hierarchical linear model is used to downscale precipitation and temperature at multiple stations from the outputs of nine General Circulation Models (GCMs) under Representative Concentration Pathways (RCPs) 4.5 and 8.5. A bivariate drought index called Precipitation–Temperature Deciles Index (PTDI) is developed using... 

    A decision support model for robust allocation and routing of search and rescue resources after earthquake: a case study

    , Article Operational Research ; 2020 Ahmadi, G ; Tavakkoli Moghaddam, R ; Baboli, A ; Najafi, M ; Sharif University of Technology
    Springer  2020
    Abstract
    The efficient planning of search and rescue (SAR) operations is highly impactful in the disaster response phase, which offers a limited time window with a declining chance for saving trapped people. The present paper introduces a new robust decision support framework for planning SAR resource deployment in post-disaster districts. A two-stage decomposition approach is applied to formulate the problem as iterative interrelated stages of mixed-integer programming (MIP) models. The first stage presents a robust multi-period allocation model for maximizing fair and effective demand coverage in the affected districts during the entire planning horizon. It takes into account the time-sensitiveness... 

    Improving blood bank inventory management using double cross-match and hybrid issuance policy

    , Article 7th IEEE International Conference on Industrial Engineering and Applications, ICIEA 2020, 16 April 2020 through 21 April 2020 ; 2020 , Pages 819-826 Bozorgi, A ; Najafi, M ; Sharif University of Technology
    Institute of Electrical and Electronics Engineers Inc  2020
    Abstract
    Blood availability in hospitals is of high humanitarian importance, thus blood shortage is not desired at all. High wastage rate of blood in hospitals is an important issue, which becomes more important as the standards of health care services becomes higher. In order to address blood shortage and wastage issues in a hospital, this paper develops a new inventory management model as a decision making tool to help making tactical and operational level decisions for a Hospital Blood Bank (HBB) inventory management. These decisions include issuance and ordering policy and the aim of the model is to reduce blood wastage and shortage. For this purpose, a multi period, multi-product inventory... 

    Stress behaviour across human tooth by temperature gradient resulting of laser irradiation

    , Article Journal of Mechanical Engineering and Sciences ; Volume 14, Issue 1 , 2020 , Pages 6218-6228 Falahatkar, S ; Nouri Borujerdi, A ; Najafi, M ; Sharif University of Technology
    Universiti Malaysia Pahang  2020
    Abstract
    The authors report the simulation of temperature distribution and thermally induced stress in the premolar tooth under ND-YAG pulsed laser beam. The Three-Phase-Lag (TPL) non-Fourier model is proposed to describe the heat conduction in the human tooth with nonhomogeneous inner structures. A premolar tooth comprising enamel, dentin, and pulp with real shapes and thicknesses are considered and a numerical method of finite difference was adopted to solve the time-dependent TPL bio-heat transfer, strain and stress equations. The surface heating scheme is applied for simulation of laser therapy. The aim of this laser therapy is that the temperature of pulp reaches to 47oC. The results are... 

    Dynamic interdiction networks with applications in illicit supply chains

    , Article Omega (United Kingdom) ; Volume 96 , October , 2020 Jabarzare, Z ; Zolfagharinia, H ; Najafi, M ; Sharif University of Technology
    Elsevier Ltd  2020
    Abstract
    We study the interdiction of illegal product distribution in a network with multiple sources (origins) and sinks (destinations). This work contributes to the literature of dynamic maximum flow interdiction problems by addressing multiple commodities in a network of relationships. The related distribution network consists of (1) criminals, who are hierarchically connected, and seeking to maximize the total profit flow from origins to destinations, and (2) enforcement officers aiming to minimize criminals’ long-term success by monitoring and arresting them, using the limited resources at their disposal. Considering several real-world operational details, we first propose a mixed-integer... 

    Considering short-term and long-term uncertainties in location and capacity planning of public healthcare facilities

    , Article European Journal of Operational Research ; Volume 281, Issue 1 , 16 February , 2020 , Pages 152-173 Motallebi Nasrabadi, A ; Najafi, M ; Zolfagharinia, H ; Sharif University of Technology
    Elsevier B.V  2020
    Abstract
    This paper addresses a real-world problem faced by the public healthcare sector. The problem consists of both the patients’ and service provider's requirements (i.e., accessibility vs. costs) for locating healthcare facilities, allocating service units to those facilities, and determining the facilities’ capacities. The main contribution of this study is capturing both short-term and long-term uncertainties at the modelling stage. The queuing theory is incorporated to consider stochastic demand and service time as a short-term uncertainty, as well as a service level measurement. The developed nonlinear model is then converted into a linear model after introducing a new set of decision... 

    Photovoltaic performance and electrochemical impedance spectroscopy analysis of CdS/CdSe-sensitized solar cell based on surfactant-modified ZnS treatment

    , Article Applied Physics A: Materials Science and Processing ; Volume 126, Issue 6 , 2020 Samadpour, M ; Dehghani, M ; Parand, P ; Natagh Najafi, M ; Parvazian, E ; Sharif University of Technology
    Springer  2020
    Abstract
    Among the various approaches, ZnS treatment is the most convenient method for reducing the charge recombination in quantum dot-sensitized solar cells (QDSSCs). Here an improved method of ZnS treatment is explained for efficiency enhancement in QDSSCs. To get to the goal of device performance improvement, it is essential to have a uniform deposited layer. We utilized Triton X-100 (TX-100) as a surfactant to the convenient aqueous precursors during ZnS deposition by successive ionic layer adsorption and reaction method. It helps to decrease in contact angle and increase in wettability of the aqueous precursor and results in a more uniform deposited layer. The effect of modified ZnS treatment... 

    Numerical and experimental analysis of copper electroforming on an aluminum substrate as a rotating cone electrode cell

    , Article ChemistrySelect ; Volume 4, Issue 40 , 2019 , Pages 11839-11847 ; 23656549 (ISSN) Memannavaz, H ; Pebdeni, H. H ; Liaghat, G ; Rahmati, S ; Najafi, M ; Fazeli, H ; Sharif University of Technology
    Wiley-Blackwell  2019
    Abstract
    In this paper, the advantages of numerical simulation to improve the process of copper electroforming are demonstrated. In this regard, the finite element model of copper electroforming for a rotating cone electrode was first prepared and then, the effect of the key parameters, such as applied current density, solution conductivity, electrode spacing, and anode height, on the uniformity of the thickness was investigated. The model combines tertiary current distribution with Bulter–Volmer electrode kinetics and computational fluid dynamics at the turbulent condition. In order to validate the model, a cone-shaped shell was produced by electroforming method in the laboratory. The obtained... 

    Hardness, wear and friction characteristics of nanostructured Cu-SiC nanocomposites fabricated by powder metallurgy route

    , Article Materials Today Communications ; Volume 18 , 2019 , Pages 25-31 ; 23524928 (ISSN) Akbarpour, M. R ; Najafi, M ; Alipour, S ; Kim, H.S ; Sharif University of Technology
    Elsevier Ltd  2019
    Abstract
    In the present study, hardness and tribological properties of nanostructured copper reinforced with SiC nanoparticles of various volume fractions (0, 2, 4, and 6 vol%) were investigated. The nanocomposites were fabricated by high-energy mechanical milling and hot pressing method. The Cu-SiC nanocomposites showed enhanced hardness and wear resistance against WC counterface. The hardness and wear resistance of the nanocomposite increased with increasing the amount of SiC nanoparticles up to 2 vol% in the matrix, but they decreased at higher percentages of SiC (4 and 6 vol%). Flake formation-spalling and abrasion were identified as the predominant wear mechanisms. It was found that reducing the... 

    Evaluation of desiccant wheel and prime mover as combined cooling, heating, and power system

    , Article International Journal of Green Energy ; Volume 16, Issue 3 , 2019 , Pages 256-268 ; 15435075 (ISSN) Mohammadian Korouyeh, M ; Saidi, M. H ; Najafi, M ; Aghanajafi, C ; Sharif University of Technology
    Taylor and Francis Inc  2019
    Abstract
    In this research heating, cooling and electrical demands of a residential tower are evaluated for Iran various weather conditions. For this purpose, several cities are selected as the representative of the specific weather conditions. To meet the cooling demand, desiccant cooling system plus alternative systems are applied. To analyze desiccant wheel, outlet humidity and temperature have been modeled. Also, the effect of rotational speed and regeneration temperature on entropy generation of the desiccant wheel has been studied based on the obtained results. It is deduced that the entropy generation may be increased by increasing the regeneration temperature and the rotational speed. To...